Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-18, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623998

RESUMO

Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.


The use of nitric acid-modified corn silk has been reported to enhance its adsorption performance over the unmodified cob for pollutants such as cadmium ions and malachite green. Although there may be no recorded data on the adsorption efficiency of acid-treated corn silk for selected pollutants, it can be considered as a prospective bio-sorbent owing to its chemical composition and functional groups for exchange of hydrogen ions for other cations.

2.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209160

RESUMO

Metal organic frameworks (MOFs) are porous hybrid crystalline materials that consist of organic linkers coordinated to metal centres. The trans-cis isomerisation kinetics of the azobenzene-4,4'-dicarboxylic acid (AZB(COOH)2) precursor, as well as the Al3+ (Al-AZB)- and Zr4+ (Zr-AZB)-based MOFs with azobenzene-4,4'-dicarboxylate linkers, are presented. The photo-isomerization in the MOFs originates from singly bound azobenzene moieties on the surface of the MOF. The type of solvent used had a slight effect on the rate of isomerization and half-life, while the band gap energies were not significantly affected by the solvents. Photo-responsive MOFs can be classified as smart materials with possible applications in sensing, drug delivery, magnetism, and molecular recognition. In this study, the MOFs were applied in the dye adsorption of congo red (CR) in contaminated water. For both MOFs, the UV-irradiated cis isomer exhibited a slightly higher CR uptake than the ambient-light exposed trans isomer. Al-AZB displayed a dye adsorption capacity of over 95% for both the UV-irradiated and ambient light samples. The ambient light exposed Zr-AZB, and the UV irradiated Zr-AZB had 39.1% and 44.6% dye removal, respectively.

3.
J Environ Manage ; 304: 114166, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34864408

RESUMO

The high efficiency of metal-organic-frameworks (MOFs) such as the ZIF, MIL and UiO type species in dye adsorption is well established. Recently, an emerging class of photoresponsive azobenzene-based MOFs has found suitable application in gas adsorption. However, there is a dearth of research on their use in the adsorption of dyes and other water pollutants. In this research, two microporous photoresponsive azobenzene dicarboxylate MOFs of Al3+ (Al-AZB) and Zr4+ (Zr-AZB) were synthesized for the adsorption of congo red (CR) dye. The surface and textural properties of the synthesized MOFs were characterized by FTIR, PXRD, SEM, TGA, BET and pore analysis. Both MOFs were crystalline, thermally stable up to 300 °C and stable in aqueous medium at room temperature. The Al-AZB displayed a higher surface area (2718 m2/g) than the Zr-AZB (1098 m2/g), which significantly impacted the higher adsorption of CR. Besides, pore volumes of 0.86 cm3/g and 0.35 cm3/g were obtained for Al-AZB and Zr-AZB, respectively. The maximum adsorption capacity of Al-AZB and Zr-AZB was 456.6 mg/g and 128.9 mg/g, respectively, with the former superior to other potent adsorbents. The pseudo-second-order and Langmuir models were well correlated with the dye uptake on the MOFs. Thermodynamics revealed random and endothermic sorption of CR dominated by chemisorption, while efficient regeneration and reuse of both MOFs were achieved using dimethylformamide as eluent. The results proved the potency of the synthesized photoresponsive MOFs, as highly efficient and reusable materials for dye adsorption.


Assuntos
Estruturas Metalorgânicas , Adsorção , Alumínio , Compostos Azo , Corantes , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...