Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 48(3): 607-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27011076

RESUMO

A heavy-metal-resistant, carotenoid-enriched novel unicellular microalga was isolated from an acidic river in Huelva, Spain. The isolated ribosomal 18S subunit rDNA sequence showed homology with known sequences from green microalgae, the closest sequence (98% homology) belonging to the genus Coccomyxa. The isolated microalga therefore was an up to now uncultured microalga. The microalga was isolated from Tinto River area (Huelva, Spain), an acidic river that exhibits very low pH (1.7-3.1) with high concentrations of sulfuric acid and heavy metals, including Fe, Cu, Mn, Ni, and Al. Electron micrographs show that the microalga contains a large chloroplast with a presence of lipid droplets, an increased number of starch bodies as well as electron-dense deposits and plastoglobules, the last observed only in iron-exposed cells. Unlike other acidophile microalgae, the isolated microalga showed high growth rates when cultivated photoautotrophycally (up to 0.6 d(-1) ) in a suitable culture medium prepared at our laboratory. The growth was shown to be iron dependent. When the microalga is grown in fluidized bed reactors, the high growth rates resulted in unexpectedly high productivities for being a microalga that naturally grows in acidic environments (0.32 g·L(-1) ·d(-1) ). The microalga also grows optimally on reduced carbon sources, including glucose and urea, and at an optimal temperature of 35°C. The alga pigment profile is particularly rich in carotenoids, especially lutein, suggesting that the microalga might have potential for antioxidant production, namely, xanthophylls.

2.
J Biosci Bioeng ; 108(1): 47-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19577191

RESUMO

beta-carotene is an antioxidant molecule of commercial value that can be naturally produced by certain microalgae that mostly belong to the genus Dunaliella. So far, nitrogen starvation has been the most efficient condition for enhancing beta-carotene accumulation in Dunaliella. However, while nitrogen starvation promotes beta-carotene accumulation, the cells become non-viable; consequently under such conditions, continuous beta-carotene production is limited to less than 1 week. In this study, the use of UV-A radiation as a tool to enhance long-term beta-carotene production in Dunaliella bardawil cultures was investigated. The effect of UV-A radiation (320-400 nm) added to photosynthetically active radiation (PAR, 400-700 nm) on growth and carotenoid accumulation of D. bardawil in a laboratory air-fluidized bed photobioreactor was studied. The results were compared with those from D. bardawil control cultures incubated with PAR only. The addition of 8.7 W.m(-2) UV-A radiation to 250 Wm(-2) PAR stimulated long-term growth of D. bardawil. Throughout the exponential growth period the UV-A irradiated cultures showed enhanced carotenoid accumulation, mostly as beta-carotene. After 24 days, the concentration of beta-carotene in UV-A irradiated cultures was approximately two times that of control cultures. Analysis revealed that UV-A clearly induced major accumulation of all-trans beta-carotene. In N-starved culture media, beta-carotene biosynthesis in UV-A irradiated cultures was stimulated. We conclude that the addition of UV-A to PAR enhances carotenoid production processes, specifically all-trans beta-carotene, in D. bardawil cells without negative effects on cell growth.


Assuntos
Reatores Biológicos , Eucariotos/efeitos da radiação , Raios Ultravioleta , beta Caroteno/biossíntese , Cromatografia Líquida de Alta Pressão , Eucariotos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...