Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(4): 3457-3471, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36637049

RESUMO

CO2 reduction in Solid Oxide Electrolysis Cells (SOECs) is a key-technology for the transition to a sustainable energy infrastructure and chemical industry. Ceria (CeO2) holds great promise in developing highly efficient, cost-effective and durable fuel electrodes, due to its promising electrocatalytic properties, and proven ability to suppress carbon deposition and to tolerate high concentrations of impurities. In the present work, we investigate the intrinsic electrocatalytic activity of ceria towards CO2 reduction by means of electrochemical impedance spectroscopy (EIS) on model systems with well-defined geometry, composition and surface area. Aiming at the optimization of the intrinsic catalytic properties of the material, we systematically study the effect of different dopants (Zr, Gd, Pr and Bi) on the reaction rate under varying operating conditions (temperature, gas composition and applied polarization) relevant for SOECs. The electrochemical measurements reveal the dominant role of the surface defect chemistry of the material in the reaction rate, with doping having only a mild effect on the rate and activation energy of the reaction. By analyzing the pO2 and overpotential dependence of the reaction rate with a general micro-kinetic model, we are able to identify the second electron transfer as the rate limiting step of the process, highlighting the dominant role of surface polarons in the energy landscape. These insights on the correlation between the surface defects and the electrocatalytic activity of ceria open new directions for the development of highly performing ceria-based technological electrodes.

2.
Phys Chem Chem Phys ; 22(27): 15418-15426, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32601629

RESUMO

The oxygen exchange activity of thin dense La0.6Sr0.4FeO3 electrodes prepared by pulsed laser deposition was investigated by electrochemical impedance spectroscopy and electrical conductivity relaxation below 600 °C. The value of the surface exchange coefficient (kchem) measured at 491 °C decreased from an initial 4.4 × 10-6 cm s-1 to 1.7 × 10-7 cm s-1 after aging for 7 days. The rapid decrease in the oxygen exchange rate was accompanied by the increase in the surface concentration of 'non-lattice strontium' detected by X-ray photoelectron spectroscopy. Subsequent electrochemical tests over 40 days showed that the electrode performance could be recovered by rinsing the passivated electrode in deionized water. Repeated treatments eventually also led to improved stability of electrochemical performance.

3.
Acta Chim Slov ; 63(3): 519-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27640379

RESUMO

Lithium anodes passivated by LiCl layers in different types of liquid cathodes (catholytes) based on LiAlCl4 in SOCl2 or SO2 have been studied by means of impedance spectroscopy. The impedance spectra have been fitted with two equivalent circuits using a nonlinear least squares fit program. Information about the ionic conductivity and the structure of the layers has been extracted. A new physical description, which is able to explain the circuit parameters, is proposed. It assumes that the LiCl-layer contains a large number of narrow tunnels and cracks filled with liquid catholyte. It is explained why such tunnels probably are formed, and for a typical case it is shown that tunnels associated with most of the LiCl grain boundaries of the fine crystalline layer near the Li surface are requested in order to explain the impedance response. The LiCl production rate and through this, the growth rate of the LiCl-layer, is limited by the electron conductivity of the layer. Micro-calorimetry data parallel with impedance spectra are used for determination of the electron conductivity of the LiCl-layer.

8.
Faraday Discuss ; 182: 393-422, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26290315

RESUMO

Operation of a Ni-YSZ electrode supported Solid Oxide Cell (SOC) was studied in both fuel cell mode (FC-mode) and electrolysis cell mode (EC-mode) in mixtures of H2O/H2, CO2/CO, H2O/H2O/CO2/CO at 750 °C, 800 °C and 850 °C. Although the SOCs are reversible, the polarisation characterisation shows that the kinetics for the reduction of H2O and CO2 is slower compared to oxidation of H2 and CO, and that oxidation/reduction in CO2/CO mixtures is slower than in H2O/H2 mixtures. The kinetic differences are partly related to the polarisation heating and the entropy change. Also the diffusion resistance is larger in EC-mode as compared to FC-mode and the low frequency concentration resistance (which is affected by diffusion), is asymmetric around the open circuit voltage (OCV), and is significantly higher in the EC-mode. Both the increased diffusion resistance and the asymmetric low frequency concentration resistance result in a decreased activity in the EC-mode. Changing the porosity of the support structure shows a significant change in both the diffusion resistance and low frequency concentration resistance when applying current, showing that diffusion limitations cannot be neglected for SOCs operated in the EC-mode. Also the Ni-YSZ TPB resistance is affected by changing the support porosity, indicating that kinetic investigations under current and even at OCV, and the chase for a general expression for "all" Ni-YSZ electrodes may be pointless. The diffusion limitations through the support and active electrode structure create an increased reducing atmosphere at the interface which may be related to the degradation of the cells.

9.
Faraday Discuss ; 182: 75-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284532

RESUMO

The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the CGOn/gas two phase boundary in CO/CO2 and in cathodic polarization can explain why the highest reaction rate is obtained for CO2 electrolysis. Large differences observed between model electrode kinetics and porous electrode kinetics are discussed.

10.
Nat Mater ; 14(2): 239-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25532070

RESUMO

One promising energy storage technology is the solid oxide electrochemical cell (SOC), which can both store electricity as chemical fuels (electrolysis mode) and convert fuels to electricity (fuel-cell mode). The widespread use of SOCs has been hindered by insufficient long-term stability, in particular at high current densities. Here we demonstrate that severe electrolysis-induced degradation, which was previously believed to be irreversible, can be completely eliminated by reversibly cycling between electrolysis and fuel-cell modes, similar to a rechargeable battery. Performing steam electrolysis continuously at high current density (1 A cm(-2)), initially at 1.33 V (97% energy efficiency), led to severe microstructure deterioration near the oxygen-electrode/electrolyte interface and a corresponding large increase in ohmic resistance. After 4,000 h of reversible cycling, however, no microstructural damage was observed and the ohmic resistance even slightly improved. The results demonstrate the viability of applying SOCs for renewable electricity storage at previously unattainable reaction rates, and have implications for our fundamental understanding of degradation mechanisms that are usually assumed to be irreversible.

12.
Dalton Trans ; 43(40): 14949-58, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24860844

RESUMO

TOF-SIMS analyses of state-of-the-art high temperature solid oxide electrolysis cells before and after testing under different operating conditions were performed. The investigated cells consist of an yttria stabilized zirconia (YSZ) electrolyte, a La1-xSrxMnO3-δ composite anode and a Ni-YSZ cermet cathode. The surfaces and cross-sections of the cells were analyzed, and several elemental impurities like Si, Ca and Na were identified and spatially mapped and their enrichment and migration during operation is reported. With advancing operation time, the concentration of these elements, especially Na and Ca, increases. For Si, a concentration gradient is found from the gas inlet to the gas outlet. Additionally, a loss of Ni percolation in the active cathode is observed in the same area where the Si enrichment is found. Based on the obtained TOF-SIMS results, the influence of the operating conditions on degradation is discussed.

13.
Phys Chem Chem Phys ; 15(18): 6769-72, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23549289

RESUMO

The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.

14.
Phys Chem Chem Phys ; 15(20): 7526-33, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23579382

RESUMO

Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Titânio/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...