Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 214: 451-458, 2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807943

RESUMO

Here, a specific and reliable fluorometric method for the rapid determination of amikacin was developed based on the molecularly imprinting polymer (MIP) capped g-C3N4 quantum dots (QDs). g-C3N4 QDs were obtained by facile and one-spot ethanol-thermal treatment of bulk g-C3N4 powder and showed a high yield fluorescence emission under UV irradiation. The MIP layer was also created on the surface on QDs, via usual self-assembly process of 3-aminopropyl triethoxysilane (APTES) functional monomers and tetraethyl ortho-silicate (TEOS) cross linker in the presence of amikacin as template molecules. The synthesized MIP-QDs composite showed an improved tendency toward the amikacin molecules. In this state, amikacin molecules located adjacent to the g-C3N4 QDs caused a remarkable quenching effect on the fluorescence emission intensity of QDs. This effect has a linear relationship with amikacin concentration and so, formed the basis of a selective assay to recognize amikacin. Under optimized experimental conditions, a linear calibration graph was obtained as the quenched emission and amikacin concentration, in the range of 3-400 ng mL-1 (4.4-585.1 nM) with a detection limit of 1.2 ng mL-1 (1.8 nM). The high selectivity of MIP sites as well as individual fluorescence properties of g-C3N4 QDs offers a high specific and sensitive monitoring method for drug detection. The method was acceptably applied for the measurement of amikacin in biological samples.


Assuntos
Amicacina/farmacocinética , Grafite/química , Nanocompostos/química , Compostos de Nitrogênio/química , Pontos Quânticos/química , Amicacina/urina , Fluorimunoensaio/métodos , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...