Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 199: 114898, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230305

RESUMO

DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Humanos , Nanoestruturas/química , DNA/química , Nanotecnologia/métodos , RNA
2.
Biofabrication ; 14(4)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793653

RESUMO

Precision-cut-tissues (PCTs), which preserve many aspects of a tissue's microenvironment, are typically imaged using conventional sample dishes and chambers. These can require large amounts of reagent and, when used for flow-through experiments, the shear forces applied on the tissues are often ill-defined. Their physical design also makes it difficult to image large volumes and repetitively image smaller regions of interest in the living slice. We report here on the design of a versatile microfluidic device capable of holding mouse or human pancreas PCTs for 3D fluorescence imaging using confocal and selective plane illumination microscopy (SPIM). Our design positions PCTs within a 5 × 5 mm × 140µm deep chamber fitted with 150µm tall channels to facilitate media exchange. Shear stress in the device is localized to small regions on the surface of the tissue and can be easily controlled. This design allows for media exchange at flowrates ∼10-fold lower than those required for conventional chambers. Finally, this design allows for imaging the same immunofluorescently labeled PCT with high resolution on a confocal and with large field of view on a SPIM, without adversely affecting image quality.


Assuntos
Imageamento Tridimensional , Dispositivos Lab-On-A-Chip , Animais , Humanos , Imageamento Tridimensional/métodos , Camundongos , Microscopia de Fluorescência/métodos , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...