Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Imaging ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38616749

RESUMO

BACKGROUND: The pathogenesis of breast cancer is characterized by dysregulated cell proliferation, leading to the formation of a neoplastic mass. Conventional methodologies for analyzing carcinomatous distal areas within whole-slide images (WSIs) tissue regions may lack comprehensive insights. PURPOSE: This study aims to introduce an innovative methodology based on convolutional neural networks (CNN), specifically employing a CNN Modified ResNet architecture for breast cancer detection. The research seeks to address the limitations of existing approaches and provide a robust solution for the comprehensive analysis of tissue regions. METHODS: The dataset utilized in this study comprises approximately 275,000 RGB image patches, each standardized at 50x50 pixels. The CNN Modified ResNet architecture is implemented, and a comparative evaluation against diverse architectures is conducted. Rigorous validation tests employing established performance metrics are carried out to assess the proposed methodology. RESULTS: The proposed architecture achieves a notable 89% accuracy in breast cancer detection, surpassing alternative methods by 2%. The results signify the efficacy and superiority of the CNN Modified ResNet model in analyzing carcinomatous distal areas within WSIs tissue regions. CONCLUSION: In conclusion, this study demonstrates the potential of the CNN Modified ResNet architecture as an effective tool for breast cancer detection. The enhanced accuracy and comprehensive analysis capabilities make it a promising approach for advancing the understanding of neoplastic masses in WSIs tissue regions. Further research and validation could solidify its role in clinical applications and diagnostic procedures.

2.
ACS Omega ; 9(9): 10267-10275, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463250

RESUMO

One of the well-known postoperative complications that requires a number of prophylactic and curative treatments is infection. The implications of postsurgical infections are further exacerbated by the emergence of antibiotic-resistant strains. Reduced effectiveness of synthetic antibiotics has led to an interest in plant-based substances. Extracts obtained from Nigella sativa have been shown to possess effective anti-infectious agents against bacteria frequently seen in bone infections. In this study, a fiber-based bone scaffold containing polycaprolactone, poly(lactic acid), and hydroxyapatite with N. sativa oil at varying concentrations was developed. Solvent electrospinning was used to fabricate the fibers with the specified composition. According to FE-SEM analysis, fibers with average diameters of 751 ± 82, 1000 ± 100, 1020 ± 90, and 1223 ± 112 nm were formed and successful integration of N. sativa oil into the fiber's structure was confirmed via FTIR. Staphylococcus aureus showed moderate susceptibility against the fibers with a maximum inhibition zone diameter of 11.5 ± 1.6 mm. MTT assay analysis exhibited concentration-dependent cell toxicity against fibroblast cells. In short, the antibacterial fibers synthesized in this study possessed antibacterial properties while also allowing moderate accommodation of CDD fibroblast cells at low oil concentrations, which can be a potential application for bone healing and mitigating postsurgical infections.

3.
RSC Adv ; 13(33): 23244-23253, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37533786

RESUMO

The cloaking characteristics of biocells can be considered as a factor to determine drug absorption by the tissues. The metal-organic core-shell structure can act as a cloak around the molecules of tissue and can be used as a nanomachine for drug delivery. Thus, we define a ratio of drug absorption based on frequency red-shift and the effective permittivity in the optical spectrum. Here, a cylinder of molecules coated by plasmonic nano core-shells is proposed for measuring the cloaking characteristics of biocells. The overall bandwidth of the proposed cloak for reflectance less than -10 dB is 36%. We check the effect of the filling factors of nanoparticles on the reflection and the frequency response of the tissue. Besides the frequency red-shift and change in the level of reflection, the phase and impedance are extracted. We could obtain the normalized scattering cross-section of 5 dB lower than the cylinder without cloak for the cylinder with a gold-DNA core-shell cloak. Here, we modify the Maxwell-Garnett equation for a cylindrical structure to obtain the effective value of the permittivity for cancer and normal tissues. The results show that obtained permittivity from the simulation has a good match with the calculated permittivity from the Maxwell-Garnet equation. Therefore, this approach can be considered as an efficient method for drug absorption and diagnosis of cancer cells from normal cells.

4.
Phys Chem Chem Phys ; 24(39): 24271-24280, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172789

RESUMO

The α polymorph of V2O5 is one of the few known cathodes capable of reversibly intercalating multivalent ions such as Mg, Ca, Zn and Al, but suffers from sluggish diffusion kinetics. The role of H2O within the electrolyte and between the layers of the structure in the form of a xerogel/aerogel structure, though, has been shown to lower diffusion barriers and lead to other improved electrochemical properties. This density functional theory study systematically investigates how and why the presence of structural H2O within α-V2O5 changes the resulting structure, voltage, and diffusion kinetics for the intercalation of Li, Na, Mg, Ca, Zn, and Al. We found that the coordination of H2O molecules with the ion leads to an improvement in voltage and energy density for all ions. This voltage increase was attributed to the extra host sites for electrons present with H2O, thus leading to a stronger ionization of the ion and a higher voltage. We also found that the increase in interlayer distance and a potential "charge shielding" effect drastically changes the electrostatic environment and the resulting diffusion kinetics. For Mg and Ca, this resulted in a decrease in diffusion barrier from 1.3 eV and 2.0 eV to 0.89 eV and 0.4 eV, respectively. We hope that our study motivates similar research regarding the role of water in both V2O5 xerogels/aerogels and other layered transition metal oxides.

5.
RSC Adv ; 11(44): 27215-27225, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35480674

RESUMO

In this paper, we design opto-plasmonic sensors by the engineered arrangement of gold-nanospheres. We use DNA-gold nanoparticle (GNP) core-shells and DNA rods as junctions between GNPs with a fishnet ground layer for controlling and improving the absorbance and reflection in the range of 100-300 THz. Based on available data, we check the effects of healthy and cancerous cells on the reflection parameter. Here, we demonstrate how the DNA junctions and distance between the nanospheres can be considered to modify the reflection. These structures can be utilized as opto-plasmonic sensors with high sensitivity to distinguish materials in terms of refractive indices. We can use an array of these sensors for both spectroscopy and optical imaging on a real scale. The proposed structures with different topologies are analyzed and their figure of merits (FOM) and sensitivities are obtained. The structure based on the DNA rods as junctions between GNPs shows the best FOM value of 340 RIU-1 and the core-shell heptamer structure has the best sensitivity of about 1287 nm RIU-1.

6.
Appl Opt ; 56(31): 8793-8796, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091694

RESUMO

In this paper, a polarization modulator is proposed, based on surface plasmons in a 1550 nm window. Following the generalized Snell's law, the meta-surface for converting an incident propagating wave to a surface wave is carefully designed with nearly 84% efficiency. Moreover, the coupling ratio for TE and TM polarization of the incident wave is calculated. Furthermore, the LiNbO3 structure is used as a polarizer. Finally, the calculations are verified by employing the rigorous numerical finite-difference time-domain simulation method, and the results are found to be in excellent agreement. Our findings may help in the realization of compact plasmonic circuits.

7.
ScientificWorldJournal ; 2014: 238717, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243202

RESUMO

We intend to design a broadband band-pass filter with notch-band, which uses coupled transmission lines in the structure, using new models of coupled transmission lines. In order to realize and present the new model, first, previous models will be simulated in the ADS program. Then, according to the change of their equations and consequently change of basic parameters of these models, optimization and dependency among these parameters and also their frequency response are attended and results of these changes in order to design a new filter are converged.


Assuntos
Simulação por Computador , Fenômenos Eletromagnéticos , Desenho de Equipamento/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...