Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38284658

RESUMO

Gaussian wavepacket dynamics has proven to be a useful semiclassical approximation for quantum simulations of high-dimensional systems with low anharmonicity. Compared to Heller's original local harmonic method, the variational Gaussian wavepacket dynamics is more accurate, but much more difficult to apply in practice because it requires evaluating the expectation values of the potential energy, gradient, and Hessian. If the variational approach is applied to the local cubic approximation of the potential, these expectation values can be evaluated analytically, but they still require the costly third derivative of the potential. To reduce the cost of the resulting local cubic variational Gaussian wavepacket dynamics, we describe efficient high-order geometric integrators, which are symplectic, time-reversible, and norm-conserving. For small time steps, they also conserve the effective energy. We demonstrate the efficiency and geometric properties of these integrators numerically on a multidimensional, nonseparable coupled Morse potential.

2.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37675850

RESUMO

Among the single-trajectory Gaussian-based methods for solving the time-dependent Schrödinger equation, the variational Gaussian approximation is the most accurate one. In contrast to Heller's original thawed Gaussian approximation, it is symplectic, conserves energy exactly, and may partially account for tunneling. However, the variational method is also much more expensive. To improve its efficiency, we symmetrically compose the second-order symplectic integrator of Faou and Lubich and obtain geometric integrators that can achieve an arbitrary even order of convergence in the time step. We demonstrate that the high-order integrators can speed up convergence drastically compared to the second-order algorithm and, in contrast to the popular fourth-order Runge-Kutta method, are time-reversible and conserve the norm and the symplectic structure exactly, regardless of the time step. To show that the method is not restricted to low-dimensional systems, we perform most of the analysis on a non-separable twenty-dimensional model of coupled Morse oscillators. We also show that the variational method may capture tunneling and, in general, improves accuracy over the non-variational thawed Gaussian approximation.

3.
J Chem Phys ; 150(2): 024105, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646718

RESUMO

Problems of heat transport are ubiquitous to various technologies such as power generation, cooling, electronics, and thermoelectrics. In this paper, we advocate for the application of the quantum self-consistent reservoir method, which is based on the generalized quantum Langevin equation, to study phononic thermal conduction in molecular junctions. The method emulates phonon-phonon scattering processes while taking into account quantum effects and far-from-equilibrium (large temperature difference) conditions. We test the applicability of the method by simulating the thermal conductance of molecular junctions with one-dimensional molecules sandwiched between solid surfaces. Our results satisfy the expected behavior of the thermal conductance in anharmonic chains as a function of length, phonon scattering rate, and temperature, thus validating the computational scheme. Moreover, we examine the effects of vibrational mismatch between the solids' phonon spectra on the heat transfer characteristics in molecular junctions. Here, we reveal the dual role of vibrational anharmonicity: It raises the resistance of the junction due to multiple scattering processes, yet it promotes energy transport across a vibrational mismatch by enabling phonon recombination and decay processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...