Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(5): 5386-5394, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343948

RESUMO

The present study described the construction and the electrochemical futures of a novel inject-printed electrochemical sensor based on spinel ferrite-doped manganese oxide nanoparticles (FMnONPs) for the sensitive differential pulse voltammetric quantification of brimonidine (BRIM) in ophthalmic solutions. At the optimized electroanalytical parameters, calibration graphs were linear within the BRIM concentration range of 24-3512 ng mL-1 and recorded a detection limit value of 8.21 ng mL-1. Cyclic voltammograms recorded at different scan rates indicated an adsorption-reaction mechanism for the electrooxidation of BRIM at the electrode surface with the involvement of two electrons and one proton based on the oxidation of the five-membered ring nitrogen atom as recommended by the molecular orbital calculations. The enhanced performance of the introduced inkjet-printed sensors integrated with FMnONPs encourages their application for monitoring BRIM residues in ophthalmic solutions and biological fluids in the presence of BRIM degradation products and other interferents for diverse quality control applications.

2.
Environ Technol ; : 1-17, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36749794

RESUMO

The indirect emission had a negative influence on the ecosystem of enormous amounts of harmful dyes into water. Fe3O4@Ag-MOF was successfully fabricated to capture Gentine violet (GV)) as a model example of cationic dye from their aqueous solutions was evaluated in this search as a method to eliminate dyes from water contaminants. FTIR, XPS, BET, TGA, SEM, TEM, and XRD have all been used to study this adsorbent in order to determine its structural and chemical characteristics as well as to interpret its binding mechanisms. According to the results of the characterization, the synthesized composite had a size about 45 nm, a surface area of 856.06 m2/g, and considerable magnetic characteristics (66.2 emug-1). Consequently, we created mesoporous surfaces that had a strong ability to interface and absorb GV dye. It is possible to use the pseudo-second order rate equation to characterize the kinetic profile., while the Langmuir equation fits isotherm models. At pH 9, maximum sorption capacities can reach 1.68 mmol.g-1. Additionally, the investigations of temperature profiles indicated the endothermic process and Thermodynamic parameters were discovered as, ΔG°, ΔH° and ΔS° The synthesized adsorbent had an interestingly high reusability of > 92 percent up to the sixth cycle. These findings revealed that a mixture of electrostatic interactions, π-π stacking, hydrogen bonds, and pore filling were involved in the GV adsorption mechanism. Fe3O4@Ag-MOF was successful in demonstrating its effectiveness as a point-of-use colour collection candidate from actual dyeing effluents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...