Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940185

RESUMO

Mitochondrial biogenesis relies on hundreds of proteins that are derived from genes encoded in the nucleus. According to characteristic properties of N-terminal targeting peptides (TP) and multi-step authentication by the protein translocase called the TOM complex, nascent polypeptides satisfying the requirements are imported into mitochondria. However, it is unknown whether eukaryotic cells with a single mitochondrion per cell have a similar complexity of presequence requirements for mitochondrial protein import compared to other eukaryotes with multiple mitochondria. Based on putative mitochondrial TP sequences in the unicellular red alga Cyanidioschyzon merolae, we designed synthetic TPs (synTPs) and showed that functional TPs must have at least one basic residue and a specific amino acid composition, although their physicochemical properties are not strictly determined. Combined with the simple composition of the TOM complex in C. merolae, our results suggest that a regional positive charge in TP is verified solely by TOM22 for mitochondrial protein import in C. merolae. The simple authentication mechanism indicates that the monomitochondrial C. merolae does not need to increase the cryptographic complexity of the lock-and-key mechanism for mitochondrial protein import.

2.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633046

RESUMO

The unicellular alga Cyanidioschyzon merolae has a simple cellular structure; each cell has one nucleus, one mitochondrion, one chloroplast and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner. This article has an associated First Person interview with the first author of the paper.


Assuntos
Sistemas CRISPR-Cas , Rodófitas , Sistemas CRISPR-Cas/genética , Núcleo Celular/genética , Edição de Genes , Humanos , RNA Guia de Cinetoplastídeos
3.
Microscopy (Oxf) ; 68(1): 45-56, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476140

RESUMO

Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.


Assuntos
Divisão Celular/fisiologia , Mitocôndrias/fisiologia , Plastídeos/fisiologia , Arabidopsis/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Rodófitas/crescimento & desenvolvimento , Simbiose
4.
Nat Plants ; 5(1): 119, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30542089

RESUMO

In the version of this Article originally published, the authors incorrectly referred to the fluorescent protein Venus being used in their study; the actual one used was enhanced yellow fluorescence protein (eYFP).

5.
Proc Natl Acad Sci U S A ; 114(50): 13284-13289, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180407

RESUMO

Mitochondria, which evolved from a free-living bacterial ancestor, contain their own genomes and genetic systems and are produced from preexisting mitochondria by binary division. The mitochondrion-dividing (MD) ring is the main skeletal structure of the mitochondrial division machinery. However, the assembly mechanism and molecular identity of the MD ring are unknown. Multi-omics analysis of isolated mitochondrial division machinery from the unicellular alga Cyanidioschyzon merolae revealed an uncharacterized glycosyltransferase, MITOCHONDRION-DIVIDING RING1 (MDR1), which is specifically expressed during mitochondrial division and forms a single ring at the mitochondrial division site. Nanoscale imaging using immunoelectron microscopy and componential analysis demonstrated that MDR1 is involved in MD ring formation and that the MD ring filaments are composed of glycosylated MDR1 and polymeric glucose nanofilaments. Down-regulation of MDR1 strongly interrupted mitochondrial division and obstructed MD ring assembly. Taken together, our results suggest that MDR1 mediates the synthesis of polyglucan nanofilaments that assemble to form the MD ring. Given that a homolog of MDR1 performs similar functions in chloroplast division, the establishment of MDR1 family proteins appears to have been a singular, crucial event for the emergence of endosymbiotic organelles.


Assuntos
Glicosiltransferases/metabolismo , Biogênese de Organelas , Proteínas de Plantas/metabolismo , Rodófitas/metabolismo , Glucanos/metabolismo , Glicosiltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Proteínas de Plantas/genética , Rodófitas/ultraestrutura
6.
Nat Plants ; 2: 16095, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27322658

RESUMO

Chloroplast division is driven by a ring containing FtsZ1 and FtsZ2 proteins, which originated from bacterial FtsZ, a tubulin-like protein; however, mechanistic details of the chloroplast FtsZ ring remain unclear. Here, we report that FtsZ1 and FtsZ2 can heteropolymerize into a contractible ring ex vivo. Fluorescently labelled FtsZ1 and/or FtsZ2 formed single rings in cells of the yeast Pichia pastoris. Photobleaching experiments indicated that co-assembly of FtsZ1 and FtsZ2 imparts polarity to polymerization. Assembly of FtsZ chimaeras revealed that the protofilaments assemble via heteropolymerization of FtsZ2 and FtsZ1. Contraction of the ring was accompanied by an increase in the filament turnover rate. Our findings suggest that the evolutionary duplication of FtsZ in plants may have increased the mobility and kinetics of FtsZ ring dynamics in chloroplast division. Thus, the gene duplication and heteropolymerization of chloroplast FtsZs may represent convergent evolution with eukaryotic tubulin.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Organismos Geneticamente Modificados/genética , Pichia/genética , Polimerização
7.
G3 (Bethesda) ; 6(5): 1179-89, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26921294

RESUMO

Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii Compared to C. reinhardtii MT, G. pectorale MT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectorale MT has more overlap with that of V. carteri MT than with C. reinhardtii MT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT-, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale-V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs.


Assuntos
Haplótipos , Locos de Características Quantitativas , Reprodução/genética , Volvox/genética , Passeio de Cromossomo , Biologia Computacional , Evolução Molecular , Expressão Gênica , Ligação Genética , Genoma de Planta , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Processos de Determinação Sexual/genética , Volvox/classificação
8.
J Phycol ; 48(3): 670-4, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27011083

RESUMO

Gametes were induced separately in cultures of each mating type of the heterothallic, isogamous colonial volvocalean Gonium pectorale O. F. Müll. to examine the tubular mating structure (TMS) of both mating types plus and minus (plus and minus), referred to as "bilateral mating papillae." Addition of dibutyryl cyclic adenosine monophosphate (DcAMP or db-cAMP) and 3-isobutyl-1-methylxanthine (IBMX) to approximately 3-week-old cultures of each mating type induced immediate release of naked gametes from the cell walls. Both plus and minus gametes formed a TMS in the anterior region of the protoplasts. Accumulation of actin was visualized by antibody staining in the TMS of both mating types as occurs in the TMS (fertilization tubule) of the plus gametes of the unicellular volvocalean Chlamydomonas reinhardtii P. A. Dang. Induction of naked gametes with a TMS in each mating type will be useful for future cell biological and evolutionary studies of the isogametes of colonial volvocalean algae.

9.
Planta ; 229(4): 781-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19096871

RESUMO

The cyanelles of glaucocystophytes are probably the most primitive of known extant plastids and the closest to cyanobacteria. Their kidney shape and FtsZ arc during the early stage of division define cyanelle division. In order to deepen and expand earlier results (Planta 227:177-187, 2007), cells of Cyanophora paradoxa were fixed with two different chemical and two different freeze-fixation methods. In addition, cyanelles from C. paradoxa were isolated to observe the surface structure of dividing cyanelles using field emission scanning electron microscopy (FE-SEM). A shallow furrow started on one side of the division plane. The furrow subsequently extended, covering the entire division circle, and then invaginated deeply, becoming clearly visible. The typical FtsZ arc was 2.3-3.4 microm long. This length matches that of the cleavage furrow observed using FE-SEM. The cyanelle cleavage furrows are from one-fourth to one-half of the circumference of the division plane. The shallow furrow that appears on the cyanelle outer surface effectively changes the division plane. Using freeze-fixation methods, the electron-dense stroma and peptidoglycan could be distinguished. In addition, an electron-dense belt structure (the cyanelle ring) was observed inside the leading edge at the cyanelle division plane. The FtsZ arc is located at the division plane ahead of the cyanelle ring. Immunogold-TEM localization shows that FtsZ is located interiorly of the cyanelle ring. The lack of an outer PD ring, together with the arch-shaped furrow, suggests that the mechanical force of the initial (arch shaped) septum furrow constriction comes from inside the cyanelle.


Assuntos
Proteínas de Algas/metabolismo , Cyanophora/metabolismo , Peptidoglicano/metabolismo , Divisão Celular , Cyanophora/citologia , Cyanophora/ultraestrutura , Imunofluorescência , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
10.
J Phycol ; 44(3): 691-702, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27041427

RESUMO

Ulva compressa L. is a heterothallic macroalga considered to be in the early evolutionary stage between isogamy and anisogamy. Two genetic lines of this species, each consisting of gametophytes with opposite mating types, were collected on the coasts of Ehime and Iwate prefectures: MGEC-1 (mt(+) ) and MGEC-2 (mt(-) ) from Ehime, and MGEC-5 (mt(+) ) and MGEC-6 (mt(-) ) from Iwate. Their relative gamete sizes (i.e., cell volumes) do not correspond to their mating types: MGEC-6 (19.8 µm(3) ) > MGEC-1 (18.6 µm(3) ) > MGEC-5 (17.0 µm(3) ) > MGEC-2 (10.1 µm(3) ). The pattern of organelle inheritance is an important sexual characteristic in many eukaryotes. We therefore investigated the relationship between gamete size and the inheritance of chloroplast DNA (cpDNA). Polymorphisms between the cpDNA of the two lines were used as markers. We found a 24 bp insertion between psbF and psbL, and the substitution of a StyI site (from CCAAGG to TCAAGG) in the intergenic region between petD and accD. Two interline crosses (MGEC-1 × MGEC-6 and MGEC-2 × MGEC-5) produced 42 and 38 zygotes, respectively. PCR and PCR-RFLP analyses showed that the cpDNA of the mt(+) gametes was consistently inherited in both crosses. The cpDNA is inherited from one parent only, and it depends not on gamete size but on being mt(+) . The cpDNA was observed during crossing and in the zygotes 6 h after mating. In 6% of the zygotes, the cpDNA derived from the mt(-) gametes disappeared 3-4 h after mating. Preferential digestion of the cpDNA in the zygote's mt(-) gamete may form the basis for uniparental inheritance of cpDNA.

11.
J Phycol ; 44(5): 1290-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27041725

RESUMO

Gametes of the marine green alga Ulva compressa L. are biflagellate and pear shaped, with one eyespot at the posterior end of the cell. The species is at an early evolutionary stage between isogamy and anisogamy. In the past, zygote formation of green algae was categorized solely by the relative sizes of gametes produced by two mating types (+ and -). Recently, however, locations of cell fusion sites and/or mating structures of gametes have been observed to differ between mating types in several green algae (asymmetry of cell fusion site and/or mating structure positions). To use this asymmetry for determining gamete mating type, we explored a new method, field emission scanning electron microscopy (FE-SEM), for visualizing the mating structure of U. compressa. When gametes were subjected to drying stress in the process of a conventional critical-point-drying method, a round structure was observed on the cell surfaces. In the mating type MGEC-1 (mt(+) ), this structure was located on the same side of the cell as the eyespot, whereas it was on the side opposite the eyespot in the mating type MGEC-2 (mt(-) ). The gametes fuse at the round structures. TEM showed an alignment of vesicles inside the cytoplasm directly below the round structures, which are indeed the mating structures. Serial sectioning and three-dimensional construction of TEM micrographs confirmed the association of the mating structure with flagellar roots. The mating structure was associated with 1d root in the MGEC-1 gamete but with 2d root in the MGEC-2 gamete.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...