Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(20): 26195-26208, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722801

RESUMO

To complement or outperform lithium-ion batteries with liquid electrolyte as energy storage devices, a high-energy as well as high-power anode material must be used in solid-state batteries. An overlooked class of anode materials is the one of conversion/alloy active materials (e.g., SnO2, which is already extensively studied in liquid electrolyte-based batteries). Conversion/alloy active materials offer high specific capacities and often also fast lithium-ion diffusion and reaction kinetics, which are required for high C-rates and application in high-energy and high-power devices such as battery electric vehicles. To date, there are only very few reports on conversion/alloy active materials─namely, SnO2─as anode material in sulfide-based solid-state batteries, with a relatively complex electrode design. Otherwise, conversion-alloy active materials are used as a seed layer or interlayer for a homogeneous Li deposition or to mitigate the formation and growth of the SEI, respectively. Within this work, four different conversion/alloy active materials─SnO2, Sn0.9Fe0.1O2, ZnO, and Zn0.9Fe0.1O─are synthesized and incorporated as negative active materials ("anodes") in composite electrodes into SSBs with Li6PS5Cl as solid electrolyte. The structure and the microstructure of the as-synthesized active materials and composite electrodes are investigated by XRD, SEM, and FIB-SEM. All active materials are evaluated based on their C-rate performance and long-term cyclability by galvanostatic cycling under a constant pressure of 40 MPa. Furthermore, light is shed on the degradation processes that take place at the interface between the active material and solid electrolyte. It is evidenced that the decomposition of Li6PS5Cl to LiCl, Li2S, and Li3P at the anode is amplified by Fe substitution. Lastly, a 2D sheet electrode is designed and cycled to tackle the interfacial degradation processes. This approach leads to an improved C-rate performance (factor of 3) as well as long-term cyclability (factor of 2.3).

2.
ACS Appl Mater Interfaces ; 16(7): 9400-9413, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324757

RESUMO

Fast and reliable evaluation of degradation and performance of cathode active materials (CAMs) for solid-state batteries (SSBs) is crucial to help better understand these systems and enable the synthesis of well-performing CAMs. However, there is a lack of well-thought-out procedures to reliably evaluate CAMs in SSBs. Current approaches often rely on X-ray photoelectron spectroscopy (XPS) for the evaluation of degradation. Unfortunately, XPS sensitivity is not very high, and minor but relevant degradation products may not be detected and distinguished. Furthermore, degradation caused by the current collector (CC) itself is usually not distinguished from CAM-induced degradation. This study uses a modified CC, which allows us to separate electrochemical degradation caused by the CC from degradation at the CAM itself. Using this CC, we present an approach using time-of-flight secondary ions mass spectrometry (ToF-SIMS) that offers high sensitivity and reliability. Principal component analysis (PCA) is applied to differentiate secondary ions as well as identify those mass fragments that correlate with degradation products. This approach also enables distinguishing between different pathways of degradation. To evaluate the kinetic performance of the samples, three-electrode rate tests are performed. Electrochemical characterization evaluates the kinetic performance of the samples under investigation. The samples are finally rated with a score that allows a reliable comparison between the different materials and offers a complete picture of the materials' characteristics in terms of electrochemical performance and degradation.

3.
Adv Sci (Weinh) ; 10(22): e2302521, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37221139

RESUMO

Interfacial instability, viz., pore formation in the lithium metal anode (LMA) during discharge leading to high impedance, current focusing induced solid-electrolyte (SE) fracture during charging, and formation/behaviour of the solid-electrolyte interphase (SEI), at the anode, is one of the major hurdles in the development of solid-state batteries (SSBs). Also, understanding cell polarization behaviour at high current density is critical to achieving the goal of fast-charging battery and electric vehicle. Herein, via in situ electrochemical scanning electron microscopy (SEM) measurements, performed with freshly deposited lithium microelectrodes on transgranularly fractured fresh Li6PS5Cl (LPSCl), the LiǀLPSCl interface kinetics are investigated beyond the linear regime. Even at relatively small overvoltages of a few mV, the LiǀLPSCl interface shows non-linear kinetics. The interface kinetics possibly involve multiple rate-limiting processes, i.e., ion transport across the SEI and SE|SEI interfaces, as well as charge transfer across the LiǀSEI interface. The total polarization resistance RP of the microelectrode interface is determined to be ≈ 0.8 Ω cm2 . It is further shown that the nanocrystalline lithium microstructure can lead to a stable LiǀSE interface via Coble creep along with uniform stripping. Also, spatially resolved lithium deposition, i.e., at grain surface flaws, grain boundaries, and flaw-free surfaces, indicates exceptionally high mechanical endurance of flaw-free surfaces toward cathodic load (>150 mA cm-2 ). This highlights the prominent role of surface defects in dendrite growth.

4.
Angew Chem Int Ed Engl ; 62(14): e202218044, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36646631

RESUMO

Organic/inorganic interfaces greatly affect Li+ transport in composite solid electrolytes (SEs), while SE/electrode interfacial stability plays a critical role in the cycling performance of solid-state batteries (SSBs). However, incomplete understanding of interfacial (in)stability hinders the practical application of composite SEs in SSBs. Herein, chemical degradation between Li6 PS5 Cl (LPSCl) and poly(ethylene glycol) (PEG) is revealed. The high polarity of PEG changes the electronic state and structural bonding of the PS4 3- tetrahedra, thus triggering a series of side reactions. A substituted terminal group of PEG not only stabilizes the inner interfaces but also extends the electrochemical window of the composite SE. Moreover, a LiF-rich layer can effectively prevent side reactions at the Li/SE interface. The results provide insights into the chemical stability of polymer/sulfide composites and demonstrate an interface design to achieve dendrite-free lithium metal batteries.

5.
Org Biomol Chem ; 15(32): 6800-6807, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28770930

RESUMO

We report a novel method for the direct synthesis of mono- and bis-arylated alkynes utilizing catalytically activated CaC2 as the alkyne component. This fluoride-activated cross coupling reaction provides advantages over existing methods regarding operational simplicity, use of readily available starting materials, and low cost.

6.
J Control Release ; 262: 159-169, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28757358

RESUMO

Drug functionalization of biomaterials is a modern and popular approach in biomaterials research. Amongst others this concept is used for the functionalization of bone implants to locally stimulate the bone healing process. For example strontium ions (Sr2+) are administered in osteoporosis therapy to stimulate bone growth and have recently been integrated into bone cements. Based on results of different analytical experiments we developed a two-phase model for the transport of therapeutically active Sr2+-ions in bone in combination with Korsmeyer-Peppas kinetics for the Sr2+ release from bone cement. Data of cement dissolution experiments into water in combination with inductively coupled plasma mass spectrometry (ICP-MS) analysis account for dissolution kinetics following Noyes-Whitney rule. For dissolution in α-MEM cell culture media the process is kinetically hindered and can be described by Korsmeyer-Peppas kinetics. Time of flight secondary ion mass spectrometry (ToF-SIMS) was used to determine the Sr2+ diffusion coefficient in healthy and osteoporotic trabecular rat bone. Therefore, bone sections were dipped in aqueous Sr2+-solution by one side and the Sr2+-profile was measured by classical SIMS depth profiling. The Sr2+ mobility can be described by a simple diffusion model and we obtained diffusion coefficients of (2.28±2.97)⋅10-12cm2/s for healthy and of (1.55±0.93)⋅10-10cm2/s for osteoporotic bone. This finding can be explained by a different bone nanostructure, which was observed by focused ion beam scanning electron microscopy (FIB-SEM) and transmission electron microscopy (TEM). Finally, the time and spatially resolved drug transport was calculated by finite element method for the femur of healthy and osteoporotic rats. The obtained results were compared to mass images that were obtained from sections of in vivo experiments by ToF-SIMS. The simulated data fits quite well to experimental results. The successfully applied model for the description of drug dispersion can help to reduce the number of animal experiments in the future.


Assuntos
Cimentos Ósseos , Fêmur/metabolismo , Osteoporose/metabolismo , Estrôncio/administração & dosagem , Animais , Cimentos Ósseos/química , Feminino , Fêmur/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ratos Sprague-Dawley , Estrôncio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...