Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Combust Flame ; 200: 142-154, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30532316

RESUMO

Quantitative X-ray computed tomography (XCT) diagnostics for reacting flows are developed and demonstrated in application to premixed flames in open and optically inaccessible geometries. A laboratory X-ray scanner is employed to investigate methane/air flames that were diluted with krypton as an inert radiodense tracer gas. Effects of acquisition rate and tracer gas concentration on the signal-to-noise ratio are examined. It is shown that statistically converged three-dimensional attenuation measurements can be obtained with limited impact from the tracer gas and within an acceptable acquisition time. Specific aspects of the tomographic reconstruction and the experimental procedure are examined, with particular emphasis on the quantification of experimental uncertainties. A method is developed to determine density and temperature from the X-ray attenuation measurements. These experiments are complemented by one- and multi-dimensional calculations to quantify the influence of krypton on the flame behavior. To demonstrate the merit of XCT for optically inaccessible flames, measurements of a complex flame geometry in a tubular confinement are performed. The use of a coflow to provide a uniform tracer-gas concentration is shown to improve the quantitative temperature evaluation. These measurements demonstrate the viability of XCT for flame-structure analysis and multi-dimensional temperature measurements using laboratory X-ray systems. Further opportunities for improving this diagnostic are discussed.

2.
Anal Chem ; 87(6): 3160-4, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25668510

RESUMO

Carbon capture, storage, and utilization has emerged as an essential technology for near-term CO2 emission control. The largest CO2 projects globally combine storage and oil recovery. The efficiency of this process relies critically on the miscibility of CO2 in crude oils at reservoir conditions. We present a microfluidic approach to quantify the minimum miscibility pressure (MMP) that leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. To validate the approach, synthetic oil mixtures of known composition (pentane, hexadecane) are tested and MMP values are compared to reported values. Results differ by less than 0.5 MPa on average, in contrast to comparison between conventional methods with variations on the order of 1-2 MPa. In terms of speed, a pressure scan for a single MMP measurement required less than 30 min (with potential to be sub-10 min), in stark contrast to days or weeks with existing approaches. The method is applied to determine the MMP for Pennsylvania, West Texas, and Saudi crudes. Importantly, our fluorescence-based approach enables rapid, automated, operator-independent measurement of MMP as needed to inform the world's largest CO2 projects.

3.
J Exp Neurosci ; 8: 7-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161366

RESUMO

This paper presents a novel virtual reality navigation (VRN) input device, called the VRNChair, offering an intuitive and natural way to interact with virtual reality (VR) environments. Traditionally, VR navigation tests are performed using stationary input devices such as keyboards or joysticks. However, in case of immersive VR environment experiments, such as our recent VRN assessment, the user may feel kinetosis (motion sickness) as a result of the disagreement between vestibular response and the optical flow. In addition, experience in using a joystick or any of the existing computer input devices may cause a bias in the accuracy of participant performance in VR environment experiments. Therefore, we have designed a VR navigational environment that is operated using a wheelchair (VRNChair). The VRNChair translates the movement of a manual wheelchair to feed any VR environment. We evaluated the VRNChair by testing on 34 young individuals in two groups performing the same navigational task with either the VRNChair or a joystick; also one older individual (55 years) performed the same experiment with both a joystick and the VRNChair. The results indicate that the VRNChair does not change the accuracy of the performance; thus removing the plausible bias of having experience using a joystick. More importantly, it significantly reduces the effect of kinetosis. While we developed VRNChair for our spatial cognition study, its application can be in many other studies involving neuroscience, neurorehabilitation, physiotherapy, and/or simply the gaming industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...