Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Radiat Oncol ; 9(6): 101490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38681895

RESUMO

Purpose: Swallow-related motion of the larynx is most significant in the cranio-caudal directions and of` short duration. Conventional target definition for radical radiation therapy includes coverage of the whole larynx. This study longitudinally examined respiration- and swallow-related laryngeal motions using cine-magnetic resonance imaging. We further analyzed the dosimetry to organs at risk by comparing 3D-conformal radiation therapy (3D-CRT), volumetric modulated arc therapy (VMAT), and intensity modulated radiation therapy (IMRT) techniques. Methods: Fifteen patients with T1-2 N0 glottic squamous cell carcinomas were prospectively recruited for up to 3 cine-MRI scans on the Elekta Unity MR-Linear accelerator, at the beginning, middle, and end of a course of radical radiation therapy. Swallow frequency and motion of the hyoid bone, cricoid and thyroid cartilages, and vocal cords were recorded during swallow and rest. Adapted treatment volumes consisted of gross tumor volume + 0.5-1 cm to a clinical target volume with an additional internal target volume (ITV) for personalized resting-motion. Swallow-related motion was deemed infrequent and was not accounted for in the ITV. We compared radiation therapy plans for 3D-CRT (whole larynx), VMAT (whole larynx), and VMAT and IMRT (ITV for resting motion). Results: Resting- and swallow-related motions were most prominent in the cranio-caudal plane. There were no significant changes in the magnitude of motion over the course of radiation therapy. There was a trend of a progressive reduction in the frequency of swallow. Treatment of partial larynx volumes with intensity modulated methods significantly reduced the dose to carotid arteries, compared with treatment of whole larynx volumes. Robustness analysis demonstrated that when accounting for intrafraction swallow, the total dose delivered to the ITV/planning target volume was maintained at above 95%. Conclusions: Swallow-related motions are infrequent and accounting for resting motion in an ITV is sufficient. VMAT/IMRT techniques that treat more conformal targets can significantly spare critical organs at risk such as the carotid arteries and thyroid gland, potentially reducing the risk of carotid artery stenosis-related complications and other long-term complications.

2.
Clin Transl Radiat Oncol ; 46: 100769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38586079

RESUMO

Purpose: The urethra is a critical structure in prostate radiotherapy planning; however, it is impossible to visualise on CT. We developed a surrogate urethra model (SUM) for CT-only planning workflow and tested its geometric and dosimetric performance against the MRI-delineated urethra (MDU). Methods: The SUM was compared against 34 different MDUs (within the treatment PTV) in patients treated with 36.25Gy (PTV)/40Gy (CTV) in 5 fractions as part of the PACE-B trial. To assess the surrogate's geometric performance, the Dice similarity coefficient (DSC), Hausdorff distance (HD), mean distance to agreement (MDTA) and the percentage of MDU outside the surrogate (UOS) were calculated. To evaluate the dosimetric performance, a paired t-test was used to calculate the mean of differences between the MDU and SUM for the D99, D98, D50, D2 and D1. The D(n) is the dose (Gy) to n% of the urethra. Results: The median results showed low agreement on DSC (0.32; IQR 0.21-0.41), but low distance to agreement, as would be expected for a small structure (HD 8.4mm (IQR 7.1-10.1mm), MDTA 2.4mm (IQR, 2.2mm-3.2mm)). The UOS was 30% (IQR, 18-54%), indicating nearly a third of the urethra lay outside of the surrogate. However, when comparing urethral dose between the MDU and SUM, the mean of differences for D99, D98 and D95 were 0.12Gy (p=0.57), 0.09Gy (p=0.61), and 0.11Gy (p=0.46) respectively. The mean of differences between the D50, D2 and D1 were 0.08Gy (p=0.04), 0.09Gy (p=0.02) and 0.1Gy (p=0.01) respectively, indicating good dosimetric agreement between MDU and SUM. Conclusion: While there were geometric differences between the MDU and SUM, there was no clinically significant difference between urethral dose-volume parameters. This surrogate model could be validated in a larger cohort and then used to estimate the urethral dose on CT planning scans in those without an MRI planning scan or urinary catheter.

3.
Int J Radiat Oncol Biol Phys ; 118(2): 378-389, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633499

RESUMO

PURPOSE: The use of magnetic resonance imaging (MRI) in radiotherapy planning is becoming more widespread, particularly with the emergence of MRI-guided radiotherapy systems. Existing guidelines for defining the prostate bed clinical target volume (CTV) show considerable heterogeneity. This study aimed to establish baseline interobserver variability (IOV) for prostate bed CTV contouring on MRI, develop international consensus guidelines, and evaluate its effect on IOV. METHODS AND MATERIALS: Participants delineated the CTV on 3 MRI scans, obtained from the Elekta Unity MR-Linac, as per their normal practice. Radiation oncologist contours were visually examined for discrepancies, and interobserver comparisons were evaluated against simultaneous truth and performance level estimation (STAPLE) contours using overlap metrics (Dice similarity coefficient and Cohen's kappa), distance metrics (mean distance to agreement and Hausdorff distance), and volume measurements. A literature review of postradical prostatectomy local recurrence patterns was performed and presented alongside IOV results to the participants. Consensus guidelines were collectively constructed, and IOV assessment was repeated using these guidelines. RESULTS: Sixteen radiation oncologists' contours were included in the final analysis. Visual evaluation demonstrated significant differences in the superior, inferior, and anterior borders. Baseline IOV assessment indicated moderate agreement for the overlap metrics while volume and distance metrics demonstrated greater variability. Consensus for optimal prostate bed CTV boundaries was established during a virtual meeting. After guideline development, a decrease in IOV was observed. The maximum volume ratio decreased from 4.7 to 3.1 and volume coefficient of variation reduced from 40% to 34%. The mean Dice similarity coefficient rose from 0.72 to 0.75 and the mean distance to agreement decreased from 3.63 to 2.95 mm. CONCLUSIONS: Interobserver variability in prostate bed contouring exists among international genitourinary experts, although this is lower than previously reported. Consensus guidelines for MRI-based prostate bed contouring have been developed, and this has resulted in an improvement in contouring concordance. However, IOV persists and strategies such as an education program, development of a contouring atlas, and further refinement of the guidelines may lead to additional improvements.


Assuntos
Radioterapia Guiada por Imagem , Masculino , Humanos , Radioterapia Guiada por Imagem/métodos , Próstata/diagnóstico por imagem , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
4.
Radiother Oncol ; 180: 109457, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608770

RESUMO

BACKGROUND AND PURPOSE: The implementation of MRI-guided online adaptive radiotherapy has facilitated the extension of therapeutic radiographers' roles to include contouring, thus releasing the clinician from attending daily treatment. Following undergoing a specifically designed training programme, an online interobserver variability study was performed. MATERIALS AND METHODS: 117 images from six patients treated on a MR Linac were contoured online by either radiographer or clinician and the same images contoured offline by the alternate profession. Dice similarity coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD) and volume metrics were used to analyse contours. Additionally, the online radiographer contours and optimised plans (n = 59) were analysed using the offline clinician defined contours. After clinical implementation of radiographer contouring, target volume comparison and dose analysis was performed on 20 contours from five patients. RESULTS: Comparison of the radiographers' and clinicians' contours resulted in a median (range) DSC of 0.92 (0.86 - 0.99), median (range) MDA of 0.98 mm (0.2-1.7) and median (range) HD of 6.3 mm (2.5-11.5) for all 117 fractions. There was no significant difference in volume size between the two groups. Of the 59 plans created with radiographer online contours and overlaid with clinicians' offline contours, 39 met mandatory dose constraints and 12 were acceptable because 95 % of the high dose PTV was covered by 95 % dose, or the high dose PTV was within 3 % of online plan. A clinician blindly reviewed the eight remaining fractions and, using trial quality assurance metrics, deemed all to be acceptable. Following clinical implementation of radiographer contouring, the median (range) DSC of CTV was 0.93 (0.88-1.0), median (range) MDA was 0.8 mm (0.04-1.18) and HD was 5.15 mm (2.09-8.54) respectively. Of the 20 plans created using radiographer online contours overlaid with clinicians' offline contours, 18 met the dosimetric success criteria, the remaining 2 were deemed acceptable by a clinician. CONCLUSION: Radiographer and clinician prostate and seminal vesicle contours on MRI for an online adaptive workflow are comparable and produce clinically acceptable plans. Radiographer contouring for prostate treatment on a MR-linac can be effectively introduced with appropriate training and evaluation. A DSC threshold for target structures could be implemented to streamline future training.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Masculino , Humanos , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Glândulas Seminais , Pelve , Radioterapia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-36654720

RESUMO

The implementation of MRI-guided online adaptive radiotherapy has enabled extension of therapeutic radiographers' roles to include contouring. An offline interobserver variability study compared five radiographers' and five clinicians' contours on 10 MRIs acquired on a MR-Linac from 10 patients. All contours were compared to a "gold standard" created from an average of clinicians' contours. The median (range) DSC of radiographers' and clinicians' contours compared to the "gold standard" was 0.91 (0.86-0.96), and 0.93 (0.88-0.97) respectively illustrating non-inferiority of the radiographers' contours to the clinicians. There was no significant difference in HD, MDA or volume size between the groups.

6.
Clin Transl Radiat Oncol ; 37: 25-32, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36052018

RESUMO

Background: The prostate demonstrates inter- and intra- fractional changes and thus adaptive radiotherapy would be required to ensure optimal coverage. Daily adaptive radiotherapy for MRI-guided radiotherapy can be both time and resource intensive when structure delineation is completed manually. Contours can be auto-generated on the MR-Linac via a deformable image registration (DIR) based mapping process from the reference image. This study evaluates the performance of automatically generated target structure contours against manually delineated contours by radiation oncologists for prostate radiotherapy on the Elekta Unity MR-Linac. Methods: Plans were generated from prostate contours propagated by DIR and rigid image registration (RIR) for forty fractions from ten patients. A two-dose level SIB (simultaneous integrated boost) IMRT plan is used to treat localised prostate cancer; 6000 cGy to the prostate and 4860 cGy to the seminal vesicles. The dose coverage of the PTV 6000 and PTV 4860 created from the manually drawn target structures was evaluated with each plan. If the dose objectives were met, the plan was considered successful in covering the gold standard (clinician-delineated) volume. Results: The mandatory PTV 6000 dose objective (D98% > 5580 cGy) was met in 81 % of DIR plans and 45 % of RIR plans. The SV were mapped by DIR only and for all the plans, the PTV 4860 dose objective met the optimal target (D98% > 4617 cGy). The plans created by RIR led to under-coverage of the clinician-delineated prostate, predominantly at the apex or the bladder-prostate interface. Conclusion: Plans created from DIR propagation of prostate contours outperform those created from RIR propagation. In approximately 1 in 5 DIR plans, dosimetric coverage of the gold standard PTV was not clinically acceptable. Thus, at our institution, we use a combination of DIR propagation of contours alongside manual editing of contours where deemed necessary for online treatments.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35243043

RESUMO

The implementation of adaptive radiotherapy for prostate cancer compensates for inter-fraction motion, at the penalty of increased time in room. The subsequent increase in bladder filling may impact dosimetry, which we have investigated on ten patients treated on the MR-linac. Patients drank water before treatment, to achieve a bladder volume of 200-300 cm3. Bladder and bowel were re-outlined offline on 140 images and plans recalculated. All mandatory bladder dose constraints and 99.1% of bowel constraints were achieved at time of treatment, despite varying bladder volumes and varying adherence to original bladder filling guidance.

8.
Clin Transl Radiat Oncol ; 26: 1-7, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33241129

RESUMO

The drive towards hypofractionated prostate radiotherapy is motivated by a low alpha/beta ratio for prostate cancer (1 to 3 Gy) compared to surrounding organs at risk, implying an improved therapeutic ratio with increasing dose per fraction. Early evidence from studies of ultrahypofractionated (UHF) prostate HDR brachytherapy has shown good tolerability in terms of normal tissue toxicities and clinical outcomes similar to conventional fractionation schedules. MR-guided stereotactic body radiotherapy (SBRT) with online plan adaptation and real-time tumour imaging may enable UHF doses to be delivered to the prostate safely, without the invasiveness of brachytherapy. The feasibility of UHF prostate treatment planning for the Unity MR-Linac (MRL, Elekta AB, Stockholm) was investigated for target prescriptions and planning constraints derived from the HDR brachytherapy and SBRT literature. Monaco 5.40 (Elekta) was used to generate MRL step-and-shoot IMRT plans for three dose fractionation protocols (5, 2 and 1 fractions), for ten randomly selected previously treated prostate cancer patients. Of the ten plans per UHF scheme, all clinical goals were met in all cases for 5 fractions, and in six cases for both 2 and 1 fraction schemes. PTV D95% was compromised by up to 6.4% and 3.9% of the associated target dose for 2 and 1 fraction plans respectively. There were two cases of PTV D95% compromise greater than a 5% dose decrease for the 2 fraction plans. The study suggests feasibility of the UHF treatment planning approaches if combined with real-time motion mitigation strategies.

9.
Clin Transl Radiat Oncol ; 23: 35-42, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32395640

RESUMO

INTRODUCTION: MR-guided adapted radiotherapy (MRgART) using a high field MR-linac has recently become available. We report the estimated delivered fractional dose of the first five prostate cancer patients treated at our centre using MRgART and compare this to C-Arm linac daily Image Guided Radiotherapy (IGRT). METHODS: Patients were treated using adapted treatment plans shaped to their daily anatomy. The treatments were recalculated on an MR image acquired immediately prior to treatment delivery in order to estimate the delivered fractional dose. C-arm linac non-adapted VMAT treatment plans were recalculated on the same MR images to estimate the fractional dose that would have been delivered using conventional radiotherapy techniques using a daily IGRT protocol. RESULTS: 95% and 93% of mandatory target coverage objectives and organ at risk dose constraints were achieved by MRgART and C-arm linac delivered dose estimates, respectively. Both delivery techniques were estimated to have achieved 98% of mandatory Organ At Risk (OAR) dose constraints whereas for the target clinical goals, 86% and 80% were achieved by MRgART and C-arm linac delivered dose estimates. CONCLUSIONS: Prostate MRgART can be delivered using the a high field MR-linac. Radiotherapy performed on a C-arm linac offers a good solution for prostate cancer patients who present with favourable anatomy at the time of reference imaging and demonstrate stable anatomy throughout the course of their treatment. For patients with critical OARs abutting target volumes on their reference image we have demonstrated the potential for a target dose coverage improvement for MRgART compared to C-arm linac treatment.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32128459

RESUMO

The MR-Linac (MRL) provides a novel treatment modality that enables online adaptive treatments, but also creates new challenges for patient positioning in a laser-free environment. The accuracy and duration of prostate patient set-up on the MRL using two different methods for patient alignment was determined to establish standard of practice on the MRL. Differences in set-up accuracy were significant in the longitudinal direction and are accounted for in online plan adaption. Both methods recorded similar set-up times. The vendor recommended alignment method involves less manipulation of the patient and will be adopted as the standard positioning method for prostate and other pelvic patients on the MRL in future.

11.
Radiother Oncol ; 145: 88-94, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31931291

RESUMO

BACKGROUND AND PURPOSE: Anatomical changes during external beam radiotherapy prevent the accurate delivery of the intended dose distribution. Resolving the delivered dose, which is currently unknown, is crucial to link radiotherapy doses to clinical outcomes and ultimately improve the standard of care. MATERIAL AND METHODS: In this study, we present a dose reconstruction workflow based on data routinely acquired during MR-guided radiotherapy. It employs 3D MR images, 2D cine MR images and treatment machine log files to calculate the delivered dose taking intrafractional motion into account. The developed pipeline was used to measure anatomical changes and assess their dosimetric impact in 89 prostate radiotherapy fractions delivered with a 1.5 T MR-linac at our institute. RESULTS: Over the course of radiation delivery, the CTV shifted 0.6 mm ± 2.1 mm posteriorly and 1.3 mm ± 1.5 mm inferiorly. When extrapolating the dose changes in each case to 20 fractions, the mean clinical target volume D98% and clinical target volume D50% dose-volume metrics decreased by 1.1 Gy ± 1.6 Gy and 0.1 Gy ± 0.2 Gy, respectively. Bladder D3% did not change (0.0 Gy ± 1.2 Gy), while rectum D3% decreased by 1.0 Gy ± 2.0 Gy. Although anatomical changes and their dosimetric impact were small in the majority of cases, large intrafractional motion caused the delivered dose to substantially deviate from the intended plan in some fractions. CONCLUSIONS: The presented end-to-end workflow is able to reliably, non-invasively and automatically reconstruct the delivered prostate radiotherapy dose by processing MR-linac treatment log files and online MR images. In the future, we envision this workflow to be adapted to other cancer sites and ultimately to enter widespread clinical use.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Imageamento por Ressonância Magnética , Masculino , Aceleradores de Partículas , Radiometria , Dosagem Radioterapêutica
12.
Br J Radiol ; 92(1094): 20180484, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30359096

RESUMO

The clinical introduction of MRI-guided radiotherapy has prompted consideration of the potential impact of the static magnetic field on biological responses to radiation. This review provides an introduction to the mechanisms of biological interaction of radiation and magnetic fields individually, in addition to a description of the magnetic field effects on megavoltage photon beams at the macroscale, microscale and nanoscale arising from the Lorentz force on secondary charged particles. A relatively small number of scientific studies have measured the impact of combined static magnetic fields and ionising radiation on biological endpoints of relevance to radiotherapy. Approximately, half of these investigations found that static magnetic fields in combination with ionising radiation produced a significantly different outcome compared with ionising radiation alone. strength static magnetic fields appear to modestly influence the radiation response via a mechanism distinct from modification to the dose distribution. This review intends to serve as a reference for future biological studies, such that understanding of static magnetic field plus ionising radiation synergism may be improved, and if necessary, accounted for in MRI-guided radiotherapy treatment planning.


Assuntos
Campos Magnéticos/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Exposição à Radiação/efeitos adversos , Radioterapia Guiada por Imagem/efeitos adversos , Animais , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Radiação Ionizante , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...