Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37109866

RESUMO

In this work, barium titanate powders were produced by sol-gel and sol-precipitation methods from metal alkoxides. In the sol-gel method, tetraisopropyl orthotitanate was mixed with 2-propanol, acetic acid and barium acetate, and the gel samples obtained were calcined at 600 °C, 800 °C and 1000 °C. Through the sol-precipitation method, tetraisopropyl orthotitanate was mixed with acetic acid and deionized water and precipitated by the addition of a concentrated solution of KOH. The products were calcined at various temperatures, and the microstructural and dielectric properties of the BaTiO3 prepared for the two processes were analyzed and compared. The results of these analyses allowed us to observe an increase in the tetragonal phase and the dielectric constant (15-50 at 20 kHz) with increasing temperatures in the samples produced by the sol-gel method, while the sample obtained by sol precipitation was cubic. The presence of BaCO3 is more evident in the sample produced by sol-precipitation, and the band gap of the products obtained did not show significant variation, changing the synthesis method (3.363-3.594 eV).

2.
J Hazard Mater ; 380: 120872, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31330391

RESUMO

Spray dried cross-linked chitosan/cobalt ferrite composite was synthesized and applied as an adsorbent for the removal of acid orange II and methylene blue. The composite was structurally, thermally, morphologically and magnetically characterized. The result obtained shows that the magnetic composite was in form of microspheres, while cobalt ferrite was encapsulated in the cross-linked chitosan with saturation magnetization of 10.79 emu g-1. Adsorption studies revealed that acid orange II adsorbed more favorably on the composite than methylene blue. The adsorption process is spontaneous and exothermic. Liu isotherm model was found to be applicable for the adsorption process. Computational studies showed that the formation of hydrogen bond between acid orange II and the magnetic composite (at both acidic and alkaline pH) contributed to its better adsorption than methylene blue. Adsorption capacity of acid orange II at pH 3 and methylene blue at pH 12 are 542 and 173 mg g-1 respectively at 303 K base on Liu isotherm model.


Assuntos
Biopolímeros/química , Corantes/isolamento & purificação , Magnetismo , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Ânions , Cátions , Quitosana/química , Cobalto/química , Corantes/química , Reagentes de Ligações Cruzadas/química , Compostos Férricos/química , Termodinâmica
3.
J Nanosci Nanotechnol ; 9(10): 5932-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19908477

RESUMO

The evolution of the structural and magnetic properties of nanocomposites formed by cobalt ferrite particles dispersed in xerogel and aerogel silica matrices (CoFe2O4/SiO2) have been studied as a function of the temperature of preparation and the amount of ferrite dispersed in the matrix. Wet samples with different amounts of CoFe2O4 in SiO2 matrix were prepared by sol-gel process in monolithic form. Xerogel and aerogel samples were prepared by controlled and hypercritical drying, respectively, and heated at various temperatures between 300 and 1100 degrees C. Superparamagnetic behavior has been observed by magnetization studies at room temperature for xerogels prepared at low temperature. Aerogel samples showed significant superparamagnetic fractions for all thermal treatment temperatures as determined by Mössbauer spectroscopy. Magnetization of the nanocomposites at 10 KOe applied field varied from 1 to 19 emu/g and the coercivity from 90 to 2320 Oe, respectively, for the different morphologies and textures of the analyzed material. The results show that besides the magnetization and coercivity depend on crystallite size, parameters such as ferrite content, porosity and drying conditions greatly influence the nanocomposite magnetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...