Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Intell (Dordr) ; 50(11): 3913-3925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34764546

RESUMO

In the past few months, several works were published in regards to the dynamics and early detection of COVID-19 via mathematical modeling and Artificial intelligence (AI). The aim of this work is to provide the research community with comprehensive overview of the methods used in these studies as well as a compendium of available open source datasets in regards to COVID-19. In all, 61 journal articles, reports, fact sheets, and websites dealing with COVID-19 were studied and reviewed. It was found that most mathematical modeling done were based on the Susceptible-Exposed-Infected-Removed (SEIR) and Susceptible-infected-recovered (SIR) models while most of the AI implementations were Convolutional Neural Network (CNN) on X-ray and CT images. In terms of available datasets, they include aggregated case reports, medical images, management strategies, healthcare workforce, demography, and mobility during the outbreak. Both Mathematical modeling and AI have both shown to be reliable tools in the fight against this pandemic. Several datasets concerning the COVID-19 have also been collected and shared open source. However, much work is needed to be done in the diversification of the datasets. Other AI and modeling applications in healthcare should be explored in regards to this COVID-19.

2.
Sensors (Basel) ; 14(6): 9738-54, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24892493

RESUMO

When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.


Assuntos
Espectroscopia Dielétrica/métodos , Condutividade Elétrica , Teste de Materiais , Simulação por Computador , Equipamentos e Provisões , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...