Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Sci Rep ; 14(1): 11864, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789554

RESUMO

Objectives were to assess differences in uterine microbiome associated with clinical cure and pregnancy outcomes in dairy cows treated for metritis. Cows with metritis (reddish-brownish, watery, and fetid vaginal discharge) were paired with cows without metritis based on parity and days postpartum. Uterine contents were collected through transcervical lavage at diagnosis, five days later following antimicrobial therapy (day 5), and at 40 days postpartum. Uterine microbiome was assessed by sequencing the V4 hypervariable region of the 16S rRNA gene. Although alpha-diversity based on Chao1, Shannon, and inverse Simpson indexes at diagnosis did not differ between cows with and without metritis, disease was associated with differences in beta-diversity. Prevalence of Porphyromonas, Bacteroides, and Veillonella was greater in cows with metritis. Streptococcus, Sphingomonas, and Ureaplasma were more prevalent in cows without metritis. Differences in beta-diversity between cows with and without metritis persisted on day 5. Uterine microbiome was not associated with clinical cure. Richness and alpha-diversity, but not beta-diversity, of uterine microbiome 40 days postpartum were associated with metritis and pregnancy. No relationship between uterine microbiome and pregnancy outcomes was observed. Results indicate that factors other than changes in intrauterine bacterial community underlie fertility loss and clinical cure in cows with metritis.


Assuntos
Doenças dos Bovinos , Endometrite , Microbiota , Resultado da Gravidez , RNA Ribossômico 16S , Útero , Feminino , Animais , Bovinos , Gravidez , Útero/microbiologia , Endometrite/microbiologia , Endometrite/veterinária , Endometrite/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/terapia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
2.
Gastroenterology ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735402

RESUMO

BACKGROUND & AIMS: Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel disease are also associated with higher risk of hyperoxaluria and nephrolithiasis. However, the potential role of PAT1 deficiency in gut-barrier integrity and susceptibility to colitis is currently elusive. METHODS: Age-matched PKO and wild-type littermates were administered 3.5% dextran sulfate sodium in drinking water for 6 days. Ileum and colon of control and treated mice were harvested. Messenger RNA and protein expression of tight junction proteins were determined by reverse transcription polymerase chain reaction and western blotting. Severity of inflammation was assessed by measuring diarrheal phenotype, cytokine expression, and H&E staining. Gut microbiome and associated metabolome were analyzed by 16S ribosomal RNA sequencing and mass spectrometry, respectively. RESULTS: PKO mice exhibited significantly higher loss of body weight, gut permeability, colonic inflammation, and diarrhea in response to dextran sulfate sodium treatment. In addition, PKO mice showed microbial dysbiosis and significantly reduced levels of butyrate and butyrate-producing microbes compared with controls. Co-housing wild-type and PKO mice for 4 weeks resulted in PKO-like signatures on the expression of tight junction proteins in the colons of wild-type mice. CONCLUSIONS: Our data demonstrate that loss of PAT1 disrupts gut microbiome and related metabolites, decreases gut-barrier integrity, and increases host susceptibility to intestinal inflammation. These findings, thus, highlight a novel role of the oxalate transporter PAT1 in promoting gut-barrier integrity, and its deficiency appears to contribute to the pathogenesis of inflammatory bowel diseases.

3.
iScience ; 27(4): 109480, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38715940

RESUMO

Ischemic stroke is the second leading cause of death and disability worldwide, and efforts to prevent stroke, mitigate secondary neurological damage, and promote neurological recovery remain paramount. Recent findings highlight the critical importance of microbiome-related metabolites, including vitamin B12 (VB12), in alleviating toxic stroke-associated neuroinflammation. Here, we showed that VB12 tonically programmed genes supporting microglial cell division and activation and critically controlled cellular fatty acid metabolism in homeostasis. Intriguingly, VB12 promoted mitochondrial transcriptional and metabolic activities and significantly restricted stroke-associated gene alterations in microglia. Furthermore, VB12 differentially altered the functions of microglial subsets during the acute phase of ischemic stroke, resulting in reduced brain damage and improved neurological function. Pharmacological depletion of microglia before ischemic stroke abolished VB12-mediated neurological improvement. Thus, our preclinical studies highlight the relevance of VB12 in the functional programming of microglia to alleviate neuroinflammation, minimize ischemic injury, and improve host neurological recovery after ischemic stroke.

4.
Sci Adv ; 10(13): eadi4310, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536923

RESUMO

The maintenance of regulatory T (Treg) cells critically prevents autoimmunity. Pre-B cell leukemia transcription factor 1 (Pbx1) variants are associated with lupus susceptibility, particularly through the expression of a dominant negative isoform Pbx1-d in CD4+ T cells. Pbx1-d overexpression impaired Treg cell homeostasis and promoted inflammatory CD4+ T cells. Here, we showed a high expression of Pbx1 in human and murine Treg cells, which is decreased in lupus patients and mice. Pbx1 deficiency or Pbx1-d overexpression reduced the number, stability, and suppressive activity of Treg cells, which increased murine responses to immunization and autoimmune induction. Mechanistically, Pbx1 deficiency altered the expression of genes implicated in cell cycle and apoptosis in Treg cells. Intriguingly, Rtkn2, a Rho-GTPase previously associated with Treg homeostasis, was directly transactivated by Pbx1. Our results suggest that the maintenance of Treg cell homeostasis and stability by Pbx1 through cell cycle progression prevent the expansion of inflammatory T cells that otherwise exacerbates lupus progression in the hosts.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Divisão Celular , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Isoformas de Proteínas/genética , Lúpus Eritematoso Sistêmico/genética
5.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293097

RESUMO

Tryptophan modulates disease activity and the composition of microbiota in the B6.Sle1.Sle2.Sle3 (TC) mouse model of lupus. To directly test the effect of tryptophan on the gut microbiome, we transplanted fecal samples from TC and B6 control mice into germ-free or antibiotic-treated non-autoimmune B6 mice that were fed with a high or low tryptophan diet. The recipient mice with TC microbiota and high tryptophan diet had higher levels of immune activation, autoantibody production and intestinal inflammation. A bloom of Ruminococcus gnavus (Rg), a bacterium associated with disease flares in lupus patients, only emerged in the recipients of TC microbiota fed with high tryptophan. Rg depletion in TC mice decreased autoantibody production and increased the frequency of regulatory T cells. Conversely, TC mice colonized with Rg showed higher autoimmune activation. Overall, these results suggest that the interplay of genetic and tryptophan can influence the pathogenesis of lupus through the gut microbiota.

6.
J Clin Periodontol ; 51(3): 309-318, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088457

RESUMO

AIM: To evaluate the effect of different oral irrigators on the sub-gingival microbiome composition in patients with naturally occurring plaque-induced gingivitis. MATERIALS AND METHODS: Sub-gingival plaque was collected from adults participating in a clinical trial assessing the efficacy of oral hygiene with two different oral irrigators (Waterpik Water Flosser [Group 1] and Oral-B Water Flosser [Group 2]) versus dental flossing (Group 3) for microbiome analysis. Plaque samples were reflective of naturally occurring plaque-induced gingivitis at baseline and of gingival health at the endpoint (4 weeks). Clinical measures of gingival inflammation were collected, and the sub-gingival microbiome was analysed by 16S rRNA sequencing to identify amplicon sequence variants. RESULTS: Oral hygiene instruction with self-performed manual toothbrushing and water-jet irrigation led to significant reductions in inflammation for all groups; both oral irrigators outperformed flossing in bleeding-on-probing reduction (p < .001). Microbiome diversity of sub-gingival plaque remained relatively stable over time, but significant changes were noted in certain taxa, consistent with increases in the relative abundance of commensals and reductions in late colonizers and periodontal pathogens in the water-jet groups. CONCLUSIONS: Reduction in gingival inflammation at 4 weeks within the water-jet groups is accompanied by slight but critical changes in microbiome composition. Although biodiversity does not substantially change within 4 weeks during the resolution of naturally induced gingivitis, significant relative increases in commensal early colonizers such as Streptococcus, Veillonella and Fusobacterium were accompanied by a shift towards a less anaerobic microbiota associated with return to health. These changes were contingent upon the type of interdental hygiene, with Group 1 exhibiting more significant alterations in microbiome composition towards a periodontal-health-compatible community.


Assuntos
Placa Dentária , Gengivite , Adulto , Humanos , Higiene Bucal , Dispositivos para o Cuidado Bucal Domiciliar , Análise de Dados Secundários , RNA Ribossômico 16S , Índice de Placa Dentária , Escovação Dentária , Gengivite/prevenção & controle , Placa Dentária/prevenção & controle , Inflamação , Água , Método Simples-Cego
7.
Gut Microbes ; 15(2): 2267180, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842912

RESUMO

The present report summarizes the United States Department of Veterans Affairs (VA) field-based meeting titled "Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans." Our Veteran patient population experiences a high incidence of service-related chronic physical and mental health problems, such as infection, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), various forms of hematological and non-hematological malignancies, neurologic conditions, end-stage organ failure, requiring transplantation, and posttraumatic stress disorder (PTSD). We report the views of a group of scientists who focus on the current state of scientific knowledge elucidating the mechanisms underlying the aforementioned disorders, novel therapeutic targets, and development of new approaches for clinical intervention. In conclusion, we dovetailed on four research areas of interest: 1) microbiome interaction with immune cells after hematopoietic cell and/or solid organ transplantation, graft-versus-host disease (GVHD) and graft rejection, 2) intestinal inflammation and its modification in IBD and cancer, 3) microbiome-neuron-immunity interplay in mental and physical health, and 4) microbiome-micronutrient-immune interactions during homeostasis and infectious diseases. At this VA field-based meeting, we proposed to explore a multi-disciplinary, multi-institutional, collaborative strategy to initiate a roadmap, specifically focusing on host microbiome-immune interactions among those with service-related chronic diseases to potentially identify novel and translatable therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Microbiota , Veteranos , Humanos , Síndrome do Intestino Irritável/terapia
8.
J Neuroinflammation ; 20(1): 221, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777791

RESUMO

BACKGROUND: Receptor-interacting protein kinase 2 (RIPK2) is a serine/threonine kinase whose activity propagates inflammatory signaling through its association with pattern recognition receptors (PRRs) and subsequent TAK1, NF-κB, and MAPK pathway activation. After stroke, dead and dying cells release a host of damage-associated molecular patterns (DAMPs) that activate PRRs and initiate a robust inflammatory response. We hypothesize that RIPK2 plays a damaging role in the progression of stroke injury by enhancing the neuroinflammatory response to stroke and that global genetic deletion or microglia-specific conditional deletion of Ripk2 will be protective following ischemic stroke. METHODS: Adult (3-6 months) male mice were subjected to 45 min of transient middle cerebral artery occlusion (tMCAO) followed by 24 h, 48 h, or 28 days of reperfusion. Aged male and female mice (18-24 months) were subjected to permanent ischemic stroke and sacrificed 48 h later. Infarct volumes were calculated using TTC staining (24-48 h) or Cresyl violet staining (28d). Sensorimotor tests (weight grip, vertical grid, and open field) were performed at indicated timepoints. Blood-brain barrier (BBB) damage, tight junction proteins, matrix metalloproteinase-9 (MMP-9), and neuroinflammatory markers were assessed via immunoblotting, ELISA, immunohistochemistry, and RT-qPCR. Differential gene expression profiles were generated through bulk RNA sequencing and nanoString®. RESULTS: Global genetic deletion of Ripk2 resulted in decreased infarct sizes and reduced neuroinflammatory markers 24 h after stroke compared to wild-type controls. Ripk2 global deletion also improved both acute and long-term behavioral outcomes with powerful effects on reducing infarct volume and mortality at 28d post-stroke. Conditional deletion of microglial Ripk2 (mKO) partially recapitulated our results in global Ripk2 deficient mice, showing reductive effects on infarct volume and improved behavioral outcomes within 48 h of injury. Finally, bulk transcriptomic profiling and nanoString data demonstrated that Ripk2 deficiency in microglia decreases genes associated with MAPK and NF-κB signaling, dampening the neuroinflammatory response after stroke injury by reducing immune cell activation and peripheral immune cell invasion. CONCLUSIONS: These results reveal a hitherto unknown role for RIPK2 in the pathogenesis of ischemic stroke injury, with microglia playing a distinct role. This study identifies RIPK2 as a potent propagator of neuroinflammatory signaling, highlighting its potential as a therapeutic target for post-stroke intervention.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Camundongos , Masculino , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Infarto , AVC Isquêmico/metabolismo , Proteínas Quinases/metabolismo , Isquemia Encefálica/metabolismo
9.
iScience ; 26(7): 107122, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37416482

RESUMO

Gut dysbiosis has been associated with lupus pathogenesis, and fecal microbiota transfers (FMT) from lupus-prone mice shown to induce autoimmune activation into healthy mice. The immune cells of lupus patients exhibit an increased glucose metabolism and treatments with 2-deoxy-D-glucose (2DG), a glycolysis inhibitor, are therapeutic in lupus-prone mice. Here, we showed in two models of lupus with different etiologies that 2DG altered the composition of the fecal microbiome and associated metabolites. In both models, FMT from 2DG-treated mice protected lupus-prone mice of the same strain from the development of glomerulonephritis, reduced autoantibody production as well as the activation of CD4+ T cells and myeloid cells as compared to FMT from control mice. Thus, we demonstrated that the protective effect of glucose inhibition in lupus is transferable through the gut microbiota, directly linking alterations in immunometabolism to gut dysbiosis in the hosts.

10.
STAR Protoc ; 4(1): 101936, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36520632

RESUMO

Intestinal epithelium is composed of several cell types, which can be dissociated but difficult to maintain high cell viability due to anoikis. Herein, we describe a step-by-step protocol for the isolation of highly viable intestinal epithelial cells using ethylenediaminetetraacetate acid and TrypLE Express, which can subsequently be employed for multi-omic analyses, including single-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Ge et al. (2022).1.


Assuntos
Intestinos , Multiômica , Animais , Camundongos , Células Epiteliais , Mucosa Intestinal , Sobrevivência Celular
11.
iScience ; 25(11): 105437, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36388972

RESUMO

Ischemic stroke critically impacts neurovascular homeostasis, potentially resulting in neurological disorders. However, the mechanisms through which stroke-induced inflammation modifies the molecular and metabolic circuits, particularly in ileal epithelial cells (iECs), currently remain elusive. Using multiomic approaches, we illustrated that stroke impaired the ileal microbiome and associated metabolites, leading to increased inflammatory signals and altered metabolites, potentially deteriorating the iEC homeostasis. Bulk transcriptomic and metabolomic profiling demonstrated that stroke enhanced fatty acid oxidation while reducing the tricarboxylic acid (TCA) cycle in iECs within the first day after stroke. Intriguingly, single-cell RNA sequencing analysis revealed that stroke dysregulated cell-type-specific gene responses within iECs and reduced frequencies of goblet and tuft cells. Additionally, stroke augmented interleukin-17A+ γδ T cells but decreased CD4+ T cells in the ileum. Collectively, our findings provide a comprehensive overview of stroke-induced intestinal dysbiosis and unveil responsive gene programming within iECs with implications for disease development.

12.
Nutrients ; 14(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889782

RESUMO

Vitamin B12 (VB12) is a micronutrient that is essential for DNA synthesis and cellular energy production. We recently demonstrated that VB12 oral supplementation coordinates ileal epithelial cells (iECs) and gut microbiota functions to resist pathogen colonization in mice, but it remains unclear whether VB12 directly modulates the cellular homeostasis of iECs derived from humans. Here, we integrated transcriptomic, metabolomic, and epigenomic analyses to identify VB12-dependent molecular and metabolic pathways in human iEC microtissue cultures. RNA sequencing (RNA-seq) revealed that VB12 notably activated genes involved in fatty acid metabolism and epithelial cell proliferation while suppressing inflammatory responses in human iECs. Untargeted metabolite profiling demonstrated that VB12 facilitated the biosynthesis of amino acids and methyl groups, particularly S-adenosylmethionine (SAM), and supported the function of the mitochondrial carnitine shuttle and TCA cycle. Further, genome-wide DNA methylation analysis illuminated a critical role of VB12 in sustaining cellular methylation programs, leading to differential CpG methylation of genes associated with intestinal barrier function and cell proliferation. Together, these findings suggest an essential involvement of VB12 in directing the fatty acid and mitochondrial metabolisms and reconfiguring the epigenome of human iECs to potentially support cellular oxygen utilization and cell proliferation.


Assuntos
Epigenômica , Vitamina B 12 , Animais , Epigênese Genética , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Humanos , Camundongos , Vitamina B 12/metabolismo
13.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35674742

RESUMO

Deprivation of vitamin B12 (VB12) is linked to various diseases, but the underlying mechanisms in disease progression are poorly understood. Using multiomic approaches, we elucidated the responses of ileal epithelial cells (iECs) and gut microbiome to VB12 dietary restriction. Here, VB12 deficiency impaired the transcriptional and metabolic programming of iECs and reduced epithelial mitochondrial respiration and carnitine shuttling during intestinal Salmonella Typhimurium (STm) infection. Fecal microbial and untargeted metabolomic profiling identified marked changes related to VB12 deficiency, including reductions of metabolites potentially activating mitochondrial ß-oxidation in iECs and short-chain fatty acids (SCFAs). Depletion of SCFA-producing microbes by streptomycin treatment decreased the VB12-dependent STm protection. Moreover, compromised mitochondrial function of iECs correlated with declined cell capability to utilize oxygen, leading to uncontrolled oxygen-dependent STm expansion in VB12-deficient mice. Our findings uncovered previously unrecognized mechanisms through which VB12 coordinates ileal epithelial mitochondrial homeostasis and gut microbiota to regulate epithelial oxygenation, resulting in the control of aerobic STm infection.


Assuntos
Microbiota , Infecções por Salmonella , Animais , Células Epiteliais , Camundongos , Oxigênio , Vitamina B 12
14.
iScience ; 25(5): 104241, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494242

RESUMO

A skewed tryptophan metabolism has been reported in patients with lupus. Here, we investigated the mechanisms by which it occurs in lupus-susceptible mice, and how tryptophan metabolites exacerbate T cell activation. Metabolomic analyses demonstrated that tryptophan is differentially catabolized in lupus mice compared to controls and that the microbiota played a role in this skewing. There was no evidence for differential expression of tryptophan catabolic enzymes in lupus mice, further supporting a major contribution of the microbiota to skewing. However, isolated lupus T cells processed tryptophan differently, suggesting a contribution of T cell intrinsic factors. Functionally, tryptophan and its microbial product tryptamine increased T cell metabolism and mTOR activation, while kynurenine promoted interferon gamma production, all of which have been associated with lupus. These results showed that a combination of microbial and T cell intrinsic factors promotes the production of tryptophan metabolites that enhance inflammatory phenotypes in lupus T cells.

15.
EBioMedicine ; 73: 103676, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34749301

RESUMO

Stroke is a leading cause of morbidity and mortality worldwide. It inflicts immeasurable suffering on patients and their loved ones and carries an immense social cost. Efforts to mitigate the impact of stroke have focused on identifying therapeutic targets for the prevention and treatment. The gut microbiome represents one such potential target given its multifaceted effects on conditions known to cause and worsen the severity of stroke. Vitamin B12 (VB12) serves as a cofactor for two enzymes, methylmalonyl-CoA synthase and methionine synthase, vital for methionine and nucleotide biosynthesis. VB12 deficiency results in a buildup of metabolic substrates, such as homocysteine, that alter immune homeostasis and contribute to atherosclerotic disorders, including ischemic stroke. In addition to its support of cellular function, VB12 serves as a metabolic cofactor for gut microbes. By shaping microbial communities, VB12 further impacts local and peripheral immunity. Growing evidence suggests that gut dysbiosis-related immune dysfunction induced by VB12 deficiency may potentially contributes to stroke pathogenesis, its severity, and patient outcomes. In this review, we discuss the complex interactions of VB12, gut microbes and the associated metabolites, and immune homeostasis throughout the natural history of ischemic stroke.


Assuntos
Eixo Encéfalo-Intestino , Suscetibilidade a Doenças , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , Vitamina B 12/metabolismo , Animais , Biomarcadores , Disbiose , Microbioma Gastrointestinal , Homocisteína/metabolismo , Humanos , AVC Isquêmico/diagnóstico , AVC Isquêmico/prevenção & controle , Redes e Vias Metabólicas , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Fatores de Risco , Pesquisa Translacional Biomédica , Deficiência de Vitamina B 12/complicações , Deficiência de Vitamina B 12/etiologia , Deficiência de Vitamina B 12/metabolismo
16.
Redox Biol ; 48: 102197, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34826783

RESUMO

Adropin is a highly-conserved peptide that has been shown to preserve endothelial barrier function. Blood-brain barrier (BBB) disruption is a key pathological event in cerebral ischemia. However, the effects of adropin on ischemic stroke outcomes remain unexplored. Hypothesizing that adropin exerts neuroprotective effects by maintaining BBB integrity, we investigated the role of adropin in stroke pathology utilizing loss- and gain-of-function genetic approaches combined with pharmacological treatment with synthetic adropin peptide. Long-term anatomical and functional outcomes were evaluated using histology, MRI, and a battery of sensorimotor and cognitive tests in mice subjected to ischemic stroke. Brain ischemia decreased endogenous adropin levels in the brain and plasma. Adropin treatment or transgenic adropin overexpression robustly reduced brain injury and improved long-term sensorimotor and cognitive function in young and aged mice subjected to ischemic stroke. In contrast, genetic deletion of adropin exacerbated ischemic brain injury, irrespective of sex. Mechanistically, adropin treatment reduced BBB damage, degradation of tight junction proteins, matrix metalloproteinase-9 activity, oxidative stress, and infiltration of neutrophils into the ischemic brain. Adropin significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS), Akt, and ERK1/2. While adropin therapy was remarkably protective in wild-type mice, it failed to reduce brain injury in eNOS-deficient animals, suggesting that eNOS is required for the protective effects of adropin in stroke. These data provide the first causal evidence that adropin exerts neurovascular protection in stroke through an eNOS-dependent mechanism. We identify adropin as a novel neuroprotective peptide with the potential to improve stroke outcomes.

17.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804088

RESUMO

Tryptophan is an essential amino acid critical for protein synthesis in humans that has emerged as a key player in the microbiota-gut-brain axis. It is the only precursor for the neurotransmitter serotonin, which is vital for the processing of emotional regulation, hunger, sleep, and pain, as well as colonic motility and secretory activity in the gut. Tryptophan catabolites from the kynurenine degradation pathway also modulate neural activity and are active in the systemic inflammatory cascade. Additionally, tryptophan and its metabolites support the development of the central and enteric nervous systems. Accordingly, dysregulation of tryptophan metabolites plays a central role in the pathogenesis of many neurologic and psychiatric disorders. Gut microbes influence tryptophan metabolism directly and indirectly, with corresponding changes in behavior and cognition. The gut microbiome has thus garnered much attention as a therapeutic target for both neurologic and psychiatric disorders where tryptophan and its metabolites play a prominent role. In this review, we will touch upon some of these features and their involvement in health and disease.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal/genética , Serotonina/metabolismo , Triptofano/metabolismo , Encéfalo/fisiologia , Colo/fisiologia , Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal/fisiologia , Homeostase/genética , Humanos , Fome/fisiologia , Cinurenina , Dor/genética , Dor/fisiopatologia , Serotonina/genética , Sono/fisiologia
18.
Gastroenterology ; 160(4): 1240-1255.e3, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33189700

RESUMO

BACKGROUND & AIMS: The down-regulated in adenoma (DRA) protein, encoded by SLC26A3, a key intestinal chloride anion exchanger, has recently been identified as a novel susceptibility gene for inflammatory bowel disease (IBD). However, the mechanisms underlying the increased susceptibility to inflammation induced by the loss of DRA remain elusive. Compromised barrier is a key event in IBD pathogenesis. The current studies were undertaken to elucidate the impact of DRA deficiency on epithelial barrier integrity and to define underlying mechanisms. METHODS: Wild-type and DRA-knockout (KO) mice and crypt-derived colonoids were used as models for intestinal epithelial response. Paracellular permeability was measured by using fluorescein isothiocyanate-dextran flux. Immunoblotting, immunofluorescence, immunohistochemistry, and ribonucleoprotein immunoprecipitation assays were performed. Gut microbiome analysis was conducted to investigate the impact of DRA deficiency on gut microbial communities. RESULTS: DRA-KO mice exhibited an increased colonic paracellular permeability with significantly decreased levels of tight junction/adherens junction proteins, including ZO-1, occludin, and E-cadherin. A similar expression pattern of occludin and E-cadherin was observed in colonoids derived from DRA-KO mice and short hairpin RNA-mediated DRA knockdown in Caco-2 cells. Microbial analysis showed gut dysbiosis in DRA-KO mice. However, cohousing studies showed that dysbiosis played only a partial role in maintaining tight junction protein expression. Furthermore, our results showed increased binding of RNA-binding protein CUGBP1 with occludin and E-cadherin genes in DRA-KO mouse colon, suggesting that posttranscriptional mechanisms play a key role in gut barrier dysfunction. CONCLUSIONS: To our knowledge, our studies demonstrate a novel role of DRA in maintaining the intestinal epithelial barrier function and potential implications of its dysregulation in IBD pathogenesis.


Assuntos
Antiporters/deficiência , Antiportadores de Cloreto-Bicarbonato/deficiência , Disbiose/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Transportadores de Sulfato/deficiência , Animais , Antiporters/genética , Proteínas CELF1/metabolismo , Células CACO-2 , Caderinas/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/patologia , Técnicas de Silenciamento de Genes , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Knockout , Ocludina/metabolismo , Permeabilidade , Transportadores de Sulfato/genética , Junções Íntimas/patologia
19.
Sci Transl Med ; 12(551)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641487

RESUMO

The autoimmune disease systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. It has been postulated that gut microbial dysbiosis may be one of the mechanisms involved in SLE pathogenesis. Here, we demonstrate that the dysbiotic gut microbiota of triple congenic (TC) lupus-prone mice (B6.Sle1.Sle2.Sle3) stimulated the production of autoantibodies and activated immune cells when transferred into germfree congenic C57BL/6 (B6) mice. Fecal transfer to B6 mice induced autoimmune phenotypes only when the TC donor mice exhibited autoimmunity. Autoimmune pathogenesis was mitigated by horizontal transfer of the gut microbiota between co-housed lupus-prone TC mice and control congenic B6 mice. Metabolomic screening identified an altered distribution of tryptophan metabolites in the feces of TC mice including an increase in kynurenine, which was alleviated after antibiotic treatment. Low dietary tryptophan prevented autoimmune pathology in TC mice, whereas high dietary tryptophan exacerbated disease. Reducing dietary tryptophan altered gut microbial taxa in both lupus-prone TC mice and control B6 mice. Consequently, fecal transfer from TC mice fed a high tryptophan diet, but not a low tryptophan diet, induced autoimmune phenotypes in germfree B6 mice. The interplay of gut microbial dysbiosis, tryptophan metabolism and host genetic susceptibility in lupus-prone mice suggest that aberrant tryptophan metabolism may contribute to autoimmune activation in this disease.


Assuntos
Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Animais , Autoimunidade , Disbiose , Camundongos , Camundongos Endogâmicos C57BL , Triptofano
20.
Proc Natl Acad Sci U S A ; 117(1): 602-609, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31836694

RESUMO

Vitamin B12 (VB12) is a critical micronutrient that controls DNA metabolic pathways to maintain the host genomic stability and tissue homeostasis. We recently reported that the newly discovered commensal Propionibacterium, P. UF1, regulates the intestinal immunity to resist pathogen infection, which may be attributed in part to VB12 produced by this bacterium. Here we demonstrate that VB12 synthesized by P. UF1 is highly dependent on cobA gene-encoding uroporphyrinogen III methyltransferase, and that this vitamin distinctively regulates the cobA operon through its 5' untranslated region (5' UTR). Furthermore, conserved secondary structure and mutagenesis analyses revealed a VB12-riboswitch, cbiMCbl (140 bp), within the 5' UTR that controls the expression of downstream genes. Intriguingly, ablation of the cbiMCbl significantly dysregulates the biosynthesis of VB12, illuminating the significance of this riboswitch for bacterial VB12 biosynthesis. Collectively, our finding is an in-depth report underscoring the regulation of VB12 within the beneficial P. UF1 bacterium, through which the commensal metabolic network may improve gut bacterial cross-feeding and human health.


Assuntos
Regulação Bacteriana da Expressão Gênica , Propionibacterium/metabolismo , Riboswitch/genética , Vitamina B 12/biossíntese , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Óperon/genética , Probióticos/metabolismo , Propionibacterium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...