Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(12): 11512-11535, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008130

RESUMO

In this work, three different derivatives of Schiff base, as mono- and di-Schiff bases, were successfully synthesized by the facile condensation of 2-aminopyridine, o-phenylenediamine, or 4-chloro-o-phenylenediamine with sodium salicylaldehyde-5-sulfonate (H1, H2, and H3, respectively). A combination of theoretical and practical studies was accomplished on the corrosion mitigation effect of the prepared Schiff base derivatives on C1018 steel in CO2-saturated 3.5% NaCl solution. The corrosion inhibition effect of the synthesized Schiff base molecules was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods. The outcomes exhibited that Schiff base derivatives have an outstanding corrosion inhibition effect on carbon steel at particularly low concentrations in sweet conditions. The outcomes showed that Schiff base derivatives exhibited a satisfactory inhibition efficiency of 96.5% (H1), 97.7% (H2), and 98.1% (H3) with a dosage of 0.5 mM at 323 K. SEM/EDX analysis confirms the adsorbed inhibitor film's formation on the metal surface. The polarization plots indicate that the studied compounds behaved as inhibitors of the mixed type according to the isotherm model of Langmuir. The computational inspections (MD simulations and DFT calculations) display a good correlation with the investigational findings. The outcomes could be applied to assess the efficiency of the inhibiting agents in the gas and oil industry.

2.
Sci Rep ; 13(1): 4812, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959277

RESUMO

2-Mercaptobenzothiazole (2-MBT) in a solution of 0.5 M HCl is an effective corrosion inhibitor for aluminum and aluminum-titanium alloys. Tafel polarization and electrochemical impedance spectroscopy (EIS) were employed to assess this heterocyclic compound's anticorrosive potential and complementary by scanning electron microscope (SEM) and calculating porosity percentage in the absence and presence of various inhibitor concentrations. Inhibition efficiency (IE%) was strongly related to concentration (10-6-10-3 M). Temperature's effect on corrosion behavior was investigated. The data exhibited that the IE% decreases as the temperature increases. An increase in activation energy (Ea) with increasing the inhibitor concentration and the decrease in the IE% value of the mentioned compound with raising the temperature indicates that the inhibitor molecules are adsorbed physically on the surface. Thermodynamic activation parameters for Al and Al-Ti alloy dissolution in both 0.5 M HCl and the inhibited solution were calculated and discussed. According to Langmuir's adsorption isotherm, the inhibitor molecules were adsorbed. The evaluated standard values of the enthalpy ([Formula: see text], entropy ([Formula: see text] and free energy changes ([Formula: see text] showed that [Formula: see text] and [Formula: see text] are negative, while [Formula: see text] was positive. The formation of a protective layer adsorbed on the surfaces of the substrates was confirmed with the surface analysis (SEM). The porosity percentage is significantly reduced in the inhibitor presence and gradually decreased with increasing concentration. Furthermore, the density functional theory (DFT) and Monte Carlo (MC) simulations were employed to explain the variance in protecting the Al surface from corrosion. Interestingly, the theoretical findings align with their experimental counterparts. The planarity of 2-MBT and the presence of heteroatoms are the playmakers in the adsorption process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...