Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 194(12): 6053-6067, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35881227

RESUMO

Biosynthesized nanoparticles have a promising future since they are a more environmentally friendly, cost-effective, repeatable, and energy-efficient technique than physical or chemical synthesis. In this work, Purpureocillium lilacinum was used to synthesize iron oxide nanoparticles (Fe2O3-NPs). Characterization of mycosynthesized Fe2O3-NPs was done by using UV-vis spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) analysis. UV-vis gave characteristic surface plasmon resonance (SPR) peak for Fe2O3-NPs at 380 nm. TEM image reveals that the morphology of biosynthesized Fe2O3-NPs was hexagonal, and their size range between 13.13 and 24.93 nm. From the XRD analysis, it was confirmed the crystalline nature of Fe2O3 with average size 57.9 nm. Further comparative study of photocatalytic decolorization of navy blue (NB) and safranin (S) using Fe2O3-NPs was done. Fe2O3-NPs exhibited potential catalytic activity with a reduction of 49.3% and 66% of navy blue and safranin, respectively. Further, the antimicrobial activity of Fe2O3-NPs was analyzed against pathogenic bacteria (Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus). The Fe2O3-NPs were clearly more effective on gram-positive bacteria (S. aureus and B. subtilis) than gram-negative bacteria (E. coli and P. aeruginosa). Thus, the mycosynthesized Fe2O3-NPs exhibited an ecofriendly, sustainable, and effective route for decolorization of navy blue and safranin dyes and antibacterial activity.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus , Escherichia coli , Corantes/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bacillus subtilis , Meio Ambiente , Nanopartículas Magnéticas de Óxido de Ferro , Difração de Raios X , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
2.
J Fungi (Basel) ; 7(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803129

RESUMO

Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by A. flavus and F. oxysporium separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak (λmax) of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of Vicia faba was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide.

3.
Biol Trace Elem Res ; 199(7): 2788-2799, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32895893

RESUMO

Mycogenic synthesis of medically applied zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) were exploited using Penicillium chrysogenum. The biogenesis and capping processes of the produced nano-metals were conducted by functional fungal extracellular enzymes and proteins. The obtained ZnO-NPs and CuO-NPs were characterized. Also, the antibacterial activity and minimum inhibitory concentration (MIC) values of ZnO-NPs and CuO-NPs were determined. Also, antibiofilm and antifungal activities were investigated. Results have demonstrated the ability of the bio-secreted proteins to cape and reduce ZnO and CuO to hexagonal and spherical ZnO-NPs and CuO-NPs with particle size at 9.0-35.0 nm and 10.5-59.7 nm, respectively. Both ZnO-NPs and CuO-NPs showed high antimicrobial activities not only against Gram-positive and Gram-negative bacteria but also against some phytopathogenic fungal strains. Besides this, those NPs showed varied antibiofilm effects against different microorganisms. Quantitative and qualitative analyses indicated that CuO-NPs had an effective antibiofilm activity against Staphylococcus aureus and therefore can be applied in diverse medical devices. Thus, the mycogenic green synthesized ZnO-NPs and CuO-NPs have the potential as smart nano-materials to be used in the medical field to limit the spread of some pathogenic microbes.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Biofilmes , Cobre/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Óxido de Zinco/farmacologia
5.
Heliyon ; 6(5): e03943, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32518846

RESUMO

This study addresses the impacts of metabolites from different microbial taxa on the fabrication and multifunctional biological properties of spherical silver nanoparticles (Ag-NPs). Three microbial taxa, a bacterial (Bacillus cereus A1-5), actinomycetes (Streptomyces noursei H1-1), and fungal (Rhizopus stolonifer A6-2) strains were used for Ag-NPs biosynthesis, whereas Streptomyces noursei is demonstrated for the first time. These isolates were identified using either 16S rRNA or ITS gene sequencing. Characterization of Ag-NPs was done using color change analysis, Uv-Vis spectroscopy, FT-IR spectroscopy, XRD, TEM, SEM-EDX, DLS, and Zeta potential analysis. All biosynthesized NPs exhibited spherical shape with different sizes ranged from 6‒50 nm, 6-30 nm and 6-40 nm for NPs obtained by A1-5, H1-1 and A6-2, respectively. The crystalline center cubic face of Ag-NPs was confirmed using XRD at 2θ values 38.08o, 44.27o, 64.41o and 77.36o. FT-IR analysis revealed varied intense absorption peaks for biomolecules required for NPs synthesize by each microbial strain. The stability of spherical Ag-NPs was confirmed due to highly DLS negative surface charge of ‒17.5mV, ‒18.9mV, and ‒15.6mV for NPs synthesized by strains A1-5, H1-1, and A6-2, respectively. Ag-NPs exhibited a broadspectrum of antibacterial activity against Gram-positive and Gram-negative bacteria with varied effectiveness. They also exhibited a cytotoxic effect against cancer cell line (caco-2) in a dose-dependent pattern with IC50 of 8.9 ± 0.5, 5.6 ± 3.0, 11.2 ± 0.5 µg/ml for NPs synthesized by strains A1-5, H1-1, and A6-2, respectively. Moreover, these spherical Ag-NPs showed larvicidal activity against the 3rd instar larvae of the dengue vector Aedes aegypti.

6.
Braz J Microbiol ; 45(2): 743-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242966

RESUMO

The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 °C after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application.


Assuntos
Celulase/isolamento & purificação , Celulase/metabolismo , Streptomyces/metabolismo , Técnicas de Tipagem Bacteriana , Carboidratos/análise , Celulose/metabolismo , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Saccharum/metabolismo , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/crescimento & desenvolvimento , Streptomyces/isolamento & purificação , Temperatura , Fatores de Tempo
7.
Braz. j. microbiol ; 45(2): 743-751, Apr.-June 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-723113

RESUMO

The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 ºC after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application.


Assuntos
Celulase/isolamento & purificação , Celulase/metabolismo , Streptomyces/metabolismo , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Carboidratos/análise , Celulose/metabolismo , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , /genética , Análise de Sequência de DNA , Saccharum/metabolismo , Streptomyces/classificação , Streptomyces/crescimento & desenvolvimento , Streptomyces/isolamento & purificação , Temperatura , Fatores de Tempo
8.
Acta Pol Pharm ; 69(3): 439-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22594258

RESUMO

A series of substituted 5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidine-4-one derivatives were newly synthesized starting from 5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidine-4-one derivatives (1). Furthermore, their derived tetrazolyl as well as the N-substituted derivatives were also prepared. The antimicrobial activity of the prepared compounds against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Aspergillus niger and Candida albicans were evaluated. The substituted thienopyrimidine derivatives 4 and 6 as well as the arylidine 10 were the highly active compounds.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Carboidratos/química , Pirimidinas/síntese química , Pirimidinas/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...