Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599091

RESUMO

Perfluoroalkyl acids (PFAAs) are ubiquitous in nature and pose serious health risks to humans and animals. Limiting PFAA exposure requires novel technology for their effective removal from water. We investigated the efficacy of biosolid-based activated carbon (Bio-SBAC) in removing frequently detected PFAAs and their precursor fluorotelomer compounds at environmentally relevant concentrations (∼50 µg/L). Batch experiments were performed to investigate adsorption kinetics, isotherms, and leachability. Bio-SBAC achieved >95% removal of fluorotelomeric compounds, indicating that the need for PFAA removal from the environment could be minimised if the precursors were targeted. Kinetic data modelling suggested that chemisorption is the dominant PFAA adsorption mechanism. As evidenced by the isotherm modelling results, Freundlich adsorption intensity, n-1, values of <1 (0.707-0.938) indicate chemisorption. Bio-SBAC showed maximum capacities for the adsorption of perfluorooctanoic acid (1429 µg/g) and perfluorononanoic acid (1111 µg/g). Batch desorption tests with 100 mg/L humic acid and 10 g/L NaCl showed that Bio-SBAC effectively retained the adsorbed PFAA with little or no leaching, except perfluorobutanoic acid. Overall, this study revealed that Bio-SBAC is a value-added material with promising characteristics for PFAA adsorption and no leachability. Additionally, it can be incorporated into biofilters to remove PFAAs from stormwater, presenting a sustainable approach to minimise biosolid disposal and improve the quality of wastewater before discharge into receiving waters.


Assuntos
Carvão Vegetal , Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Fluorocarbonos/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Caprilatos/química , Cinética
2.
Chemosphere ; 350: 141074, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160959

RESUMO

Enormous annual sewage sludge (SS) volumes pose global environmental challenges owing to contamination and significant greenhouse gas emissions. Here, we investigated the economic viability of co-pyrolyzing SS and biomass waste to produce biofuels (bio-oil and gas) and biochar. Net present worth (NPW) analysis, the sale product break-even price, and sludge handling price (SHP) were used to determine the profitability of co-pyrolysis compared with SS pyrolysis alone and conventional treatment methods. In this study, the sale prices of biochar based on quality (i.e., stability, carbon sequestration effectiveness, and heavy metal content) were estimated to be 2.24, 1.44, and 0.98 CAD/kg for high-, medium-, and low-grade biochar. The bio-oil prices, estimated based on the higher heating values of bio-oil and diesel, ranged from 0.80 to 1.22 CAD/kg. Sawdust (SD) and wheat straw (WS) were the chosen co-pyrolysis feedstocks, with four mixing ratios (20, 40, 60, and 80 wt%). Economically, SD (40 wt% mixing ratio) co-pyrolysis achieved the best performance, with a maximum NPW of 8.71 million CAD. SD single and co-pyrolysis were the only profitable scenarios. Moreover, SS single pyrolysis and WS co-pyrolysis exhibited higher profitability than conventional SS treatment methods, with SHPs of 65 and 40 CAD/1000 kg dry sludge, respectively. Sensitivity analysis highlighted the dependence of economic performance on biochar and bio-oil market value. This study offers the first economic analysis of this approach and enhances our understanding of the potential of co-pyrolysis for biofuel and biochar production, providing innovative solutions for the environmental challenges of SS disposal.


Assuntos
Biocombustíveis , Óleos de Plantas , Polifenóis , Esgotos , Pirólise , Biomassa , Estudos de Viabilidade , Carvão Vegetal
3.
Int J Biol Macromol ; 242(Pt 2): 124803, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182627

RESUMO

Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.


Assuntos
Nanopartículas Metálicas , Polímeros , Carboidratos , Solventes , Embalagem de Alimentos
4.
J Hazard Mater ; 445: 130632, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056026

RESUMO

Environmental and economic issues resulting from the unsustainable management of sewage sludge from wastewater have necessitated the development of eco-friendly sewage sludge disposal methods, whereas stormwater effluent contains tremendous amounts of pollutants. This study compares the feasibility and environmental impacts associated with incorporating biofilters with sludge-based activated carbon (SBAC) versus commercial activated carbon (CAC) for stormwater treatment. The results demonstrate that the construction and disposal life-cycle stages are the dominant contributors to several environmental impact categories, including resource scarcity, carcinogenic toxicity, terrestrial ecotoxicity, and ozone formation indicators. Across multiple impact categories, the incorporation of biofilters with SBAC can reduce the negative environmental impacts associated with biofilter construction and disposal by 40% over a 50-year analysis period. In contrast, the most significant improvement is on construction-dominant indicators, where the decreased need for biofilter reconstruction results in a higher reduction in environmental impacts. Economically, amending the biofilter with SBAC can increase profits by up to 66% due to extending its lifespan. This study shows that SBAC has similar performance as CAC for lowering the negative environmental impacts resulting from biofilter construction, while increasing the overall net profits of the system. However, converting sewage sludge to an effective sorbent (SBAC) and incorporating SBAC into a biofilter to capture pollutants from stormwater is an economically and environmentally sustainable solution available to practitioners to manage sewage sludge and stormwater effluent. This solution protects the environment in a cost efficient, sustainable manner.


Assuntos
Poluentes Ambientais , Purificação da Água , Esgotos , Carvão Vegetal , Chuva , Abastecimento de Água , Custos e Análise de Custo
5.
Sci Total Environ ; 874: 162392, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36842579

RESUMO

Massive sewage sludge (SS) production from municipal wastewater treatment plants and the presence of numerous pollutant types render the process of SS treatment and disposal costly and complex. Here, resource recovery from SS was maximised via the optimisation of sludge-based activated carbon (SBAC) production for the removal of poly- and perfluoroalkyl substances (PFASs), while considering economic factors and minimising environmental impacts. SBAC production optimisation was realised under different operating conditions (different ZnCl2 impregnation ratios and different pyrolysis activation temperatures and durations). The sorption capacity of the optimised SBAC with respect to the removal of nine commonly detected PFASs, with environmentally relevant concentrations (∽50 µg/L), from simulated wastewater was evaluated. Economic analysis and life-cycle assessment (LCA) were also performed to determine the feasibility of the process and its potential role in the circular economy. Batch adsorption tests confirmed the high efficiency of the optimised SBACs for PFAS removal (93-100 %), highlighting the possibility of converting SS to SBAC. Economically speaking, the optimised SBAC at 1.5 M ZnCl2, 500 °C, and 0.75 h reduced total production cost by 49 %. Further, the cost could be reduced to as little as 1087 US $/metric-ton compared with that corresponding to the original conditions (2.5 M ZnCl2, 500 °C, 2 h; 2144 US $/metric-ton). LCA results also showed that freshwater ecotoxicity, marine ecotoxicity, and human non-carcinogenic toxicity were the most affected environmental impact indicators, showing a 49 % decrease when ZnCl2 impregnation ratio was reduced from 2.5 to 1.5 M. These findings highlighted the optimal conditions for the production of SBAC with high sorption capacity at a reduced cost and with reduced environmental impacts. Thus, they can serve as valuable tools for decision making regarding the selection of the most sustainable and economically feasible process for PFAS removal.


Assuntos
Fluorocarbonos , Esgotos , Humanos , Esgotos/análise , Carvão Vegetal/análise , Águas Residuárias , Indicadores Ambientais , Fluorocarbonos/análise
6.
Chemosphere ; 313: 137483, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513201

RESUMO

Nanostructured materials offer a significant role in wastewater treatment with diminished capital and operational expense, low dose, and pollutant selectivity. Specifically, the nanocomposites of cellulose with inorganic nanoparticles (NPs) have drawn a prodigious interest because of the extraordinary cellulose properties, high specific surface area, and pollutant selectivity of NPs. Integrating inorganic NPs with cellulose biopolymers for wastewater treatment is a promising advantage for inorganic NPs, such as colloidal stability, agglomeration prevention, and easy isolation of magnetic material after use. This article presents a comprehensive overview of water treatment approaches following wastewater remediation by green and environmentally friendly cellulose/inorganic nanoparticles-based bio-nanocomposites. The functionalization of cellulose, functionalization mechanism, and engineered hybrid materials were thoroughly discussed. Moreover, we also highlighted the purification of wastewater through the composites of cellulose/inorganic nanoparticles via adsorption, photocatalytic and antibacterial approach.


Assuntos
Poluentes Ambientais , Nanocompostos , Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Celulose
7.
Environ Res ; 215(Pt 1): 114224, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058276

RESUMO

Microplastics are a silent threat that represent a high degree of danger to the environment in its different ecosystems and of course will also have an important impact on the health of living organisms. It is evident the need to have effective treatments for their treatment, however this is not a simple task, this as a result of the behavior of microplastics in wastewater treatment plants due to their different types and nature, their long molecular chain, reactivity against water, size, shape and the functional groups they carry. Wastewater treatment plants are at the circumference of the release of these wastes into the environment. They often act as a source of many contaminations, which makes this problem more complex. Challenges such as detection in the current scenario using the latest analytical techniques impede the correct understanding of the problem. Due to microplastics, treatment plants have operational and process stability problems. This review paper will present the in-depth situation of occurrence of microplastics, their detection, conventional and advanced treatment methods as well as implementation of legislations worldwide in a comprehensive manner. It has been observed that no innovative or new technologies have emerged to treat microplastics. Therefore, in this article, technologies targeting wastewater treatment plants are critically analyzed. This will help to understand their fate, but also to develop state-of-the-art technologies or combinations of them for the selective treatment of microplastics. The pros and cons of the treatment methods adopted and the knowledge gaps in legislation regarding their implementation are also comprehensively analyzed. This critical work will offer the development of new strategies to restrict microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Microplásticos/toxicidade , Plásticos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Chemosphere ; 307(Pt 3): 136035, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35973503

RESUMO

Rampant industrial boom, urbanization, and exponential population growth resulted in widespread environmental pollution, with water being one of the leading affected resources. All kinds of pollutants, including phenols, industrial dyes, antibiotics, pharmaceutically active residues, and persistent/volatile organic compounds, have a paramount effect, either directly or indirectly, on human health and aquatic entities. Strategies for affordable and efficient decontamination of these emerging pollutants have become the prime focus of academic researchers, industry, and government to constitute a sustainable human society. Classical treatment techniques for environmental contaminants are associated with several limitations, such as inefficiency, complex pretreatments, overall high process cost, high sludge generation, and highly toxic side-products formation. Enzymatic remediation is considered a green and ecologically friendlier method that holds considerable potential to mitigate any kinds of contaminating agents. Exploiting the potential of various peroxidases for pollution abatement is an emerging research area and has considerable advantages, such as efficiency and ease of handling, over other methods. This work is designed to provide recent progress in deploying peroxidases as green and versatile biocatalytic tools for the degradation and transformation of a spectrum of potentially hazardous environmental pollutants to broaden their scope for biotechnological and environmental purposes. More studies are required to explicate the degradation mechanisms, assess the toxicology levels of bio-transformed metabolites, and standardize the treatment strategies for economic viability.


Assuntos
Poluentes Ambientais , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Antibacterianos , Biodegradação Ambiental , Biotransformação , Corantes/metabolismo , Poluentes Ambientais/metabolismo , Humanos , Peroxidases/metabolismo , Fenóis , Esgotos , Água , Poluentes Químicos da Água/química
9.
Bioresour Technol ; 360: 127620, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35840028

RESUMO

The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.


Assuntos
Biocombustíveis , Gerenciamento de Resíduos , Biotecnologia , Carbono , Reciclagem
10.
Sci Total Environ ; 847: 157658, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908703

RESUMO

In this study, the microwave-assisted pyrolysis coupled with ex-situ catalytic reforming of polyethylene for naphtha range hydrocarbons, with low aromatic content, was investigated. Experimental results revealed that ZSM-5 zeolites with low SiO2/Al2O3 ratios led to high aromatic selectivity, while an extremely high SiO2/Al2O3 ratio significantly reduced the aromatic selectivity. The high selectivity of C5-C12 hydrocarbons (98.9 %) with low selectivity of C5-C12 aromatics (28.5 %) was obtained over a high silica ZSM-5 zeolite at a pyrolysis temperature of 500 °C, catalytic cracking temperature of 460 °C, and a weight hourly space velocity of 7 h-1. The liquid oil produced was mainly composed of C5-C12 olefins that can be easily converted into paraffin-rich naphtha by hydrogenation or hydrogen transfer reactions as the feedstock for new plastic manufacturing. 8 cycles of regeneration-reaction cycles were carried out successfully with little change on the product distribution, showing the great potential for continuous production of low-aromatic liquid oil. Catalyst characterization showed that the catalyst deactivation was primarily caused by coke deposition (approximately 16.0 wt%) on the surface of the catalysts, and oxidative regeneration was able to recover most of the pore structure and acidity of the zeolite by effectively removing coke. This study provides a better understanding for the plastic-to-naphtha process and even for scale-up studies.

11.
Environ Res ; 213: 113632, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35700765

RESUMO

Unlike renewable energy sources, burning fossil fuels has severe environmental impacts, such as greenhouse gas (GHG) emissions and climate change. Therefore, this study was conducted to assess and compare the environmental impacts of three biogas utilization scenarios for energy production. The life cycle assessment (LCA) method was used to compare (i) biogas combustion in combined heat and power (CHP) unit, (ii) biogas burning in a steam boiler, and (iii) biogas upgrading using pressure swing adsorption (PSA) unit to determine the most sustainable option. The results revealed that the upgrading scenario was the best option, achieving emission savings in 8 out of 10 investigated impact categories. Among them, the emission saving was the highest in the marine aquatic ecotoxicity category (-4276.97 kg 1,4-DB eq./MJ). The CHP scenario was the second-best option, followed by the boiler scenario (worst option), and both had the most beneficial performance in the ozone depletion potential category with 6.29E-08 and 9.88E-08 kg CFC-11-eq./MJ, respectively. The environmental burdens of the boiler scenario were the highest in the marine aquatic ecotoxicity category (248.92 kg 1,4-DB eq./MJ). Although the CHP and boiler scenarios contributed to environmental burdens in all impact categories, they achieved beneficial performances compared to fossil fuel-based systems.


Assuntos
Biocombustíveis , Meio Ambiente , Animais , Biocombustíveis/toxicidade , Mudança Climática , Combustíveis Fósseis , Estágios do Ciclo de Vida
12.
J Environ Manage ; 317: 115510, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751294

RESUMO

Stormwater is a major contributor to microplastic (MP) pollution in the aquatic environment. Although MPs are associated with many toxicological effects, their levels in stormwater are not regulated. This review compared the effectiveness of different MP removal technologies from stormwater runoff and examined the performance of typical stormwater treatment systems for MP removal to assess possible MP pollution control via stormwater management. Bioretention and filtration systems performed similarly with 84-96% MP removal efficiencies. Despite the limited number of studies that focused on wetlands and retention ponds, preliminary data suggested potential for MP removal with efficiencies of 28-55% and 85-99%, respectively. Despite the higher efficiency of bioretention and filtration systems, their removal efficiency of fibrous MPs was not optimal. Furthermore, wetlands were less effective in removing MPs than retention ponds, although the limited data might lead to an inaccurate representation of typical performances. Therefore, more research is required to arrive at definitive conclusions and to investigate alternative treatment options, such as ballasted sand flocculation, flotation, and biological degradation, and evaluate the effectiveness of bioretention and filtration for MPs <100 µm.


Assuntos
Microplásticos , Purificação da Água , Plásticos , Chuva , Abastecimento de Água
13.
Environ Res ; 212(Pt D): 113404, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568236

RESUMO

Bioenergy is a promising solution for greenhouse gas (GHG) emissions mitigation. However, the emissions resulting from the different production stages must be quantified and evaluated. The life cycle assessment (LCA) method was used to compare and quantify the environmental burdens of three rice straw (RS) utilization scenarios for producing biogas, briquette fuel, and syngas. To our knowledge, this is the first study that applies the LCA approach to assess these three bioenergy scenarios in a single study where the main goal was to determine the most sustainable option. A total of 10 mid-point impact categories were investigated. The results indicated that the three scenarios achieved net positive energy and net negative GHG balances. The briquette fuel scenarios had the highest net energy balance (11,115 MJ/tonne dry RS), while the syngas scenario had the highest net GHG (-2,315 kg CO2-eq./tonne dry RS). Moreover, the syngas scenario was the most beneficial to the environment, achieving negative results in 9 out of the 10 impact categories; the largest was marine ecotoxicity (-853,897 kg 1,4-DB-eq./tonne dry RS). The biogas scenario achieved emission savings in 3 out of the 10 categories. Although the briquette fuel scenario had no negative values in the 10 categories, its overall contribution to environmental burdens was relatively low. Overall, the order of the three scenarios in terms of the most sustainable option is syngas > briquette fuel > biogas.


Assuntos
Gases de Efeito Estufa , Oryza , Animais , Biocombustíveis , Efeito Estufa , Estágios do Ciclo de Vida
14.
J Environ Manage ; 316: 115263, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35584595

RESUMO

The toxic oxidation intermediate p-benzoquinone exists in aqueous environments at dilute concentrations above the fish-toxicity limit of 0.045 mg/L, affecting aquatic life. The reduction of this compound to the concentrations required to achieve safe discharge limits is challenging. In this study, the adsorptive removal of p-benzoquinone by a biosolid-based activated carbon (SBAC) was systematically investigated in batch experiments. The adsorption rate was rapid, and the bulk of p-benzoquinone adsorption occurred within 30 min. The maximum adsorption capacity of SBAC was estimated at 19.6 mg/g using the Langmuir isotherm model. Its adsorptivity was independent of temperature from 6 to 40 °C. The presence of 6 g/L of chloride and 500 mg/L of sulphate did not affect the removal of 1 mg/L p-benzoquinone, whereas 15 mg/L of humic acid media slightly decreased the p-benzoquinone removal from 87.0% to 83.2%. Diffusion, hydrophilic, and electrostatic interactions (i.e., dipole-dipole) govern the adsorption of p-benzoquinone and are influenced by the SBAC surface chemistry. Biosolid-based activated carbon can lower the residual p-benzoquinone to below the fish-toxicity limit of 0.045 mg/L within 1 h of sequential adsorption. Thus, biosolid-based activated carbon can effectively remove p-benzoquinone from aqueous environments; this is a waste-to-resource approach that addresses sustainability (waste disposal) and environmental protection (pollutant removal).


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Benzoquinonas , Biossólidos , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Água , Poluentes Químicos da Água/química
15.
Environ Sci Pollut Res Int ; 29(31): 46438-46457, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35499739

RESUMO

The COVID-19 pandemic not only has caused a global health crisis but also has significant environmental consequences. Although many studies are confirming the short-term improvements in air quality in several countries across the world, the long-term negative consequences outweigh all the claimed positive impacts. As a result, this review highlights the positive and the long-term negative environmental effects of the COVID-19 pandemic by evaluating the scientific literature. Remarkable reduction in the levels of CO (3 - 65%), NO2 (17 - 83%), NOx (24 - 47%), PM2.5 (22 - 78%), PM10 (23 - 80%), and VOCs (25 - 57%) was observed during the lockdown across the world. However, according to this review, the pandemic put enormous strain on the present waste collection and treatment system, resulting in ineffective waste management practices, damaging the environment. The extensive usage of face masks increased the release of microplastics/nanoplastics (183 to 1247 particles piece-1) and organic pollutants in land and water bodies. Furthermore, the significant usages of anti-bacterial hand sanitizers, disinfectants, and pharmaceuticals have increased the accumulation of various toxic emerging contaminants (e.g., triclocarban, triclosan, bisphenol-A, hydroxychloroquine) in the treated sludge/biosolids and discharged wastewater effluent, posing great threats to the ecosystems. This review also suggests strategies to create long-term environmental advantages. Thermochemical conversions of solid wastes including medical wastes and for treated wastewater sludge/biosolids offer several advantages through recovering the resources and energy and stabilizing/destructing the toxins/contaminants and microplastics in the precursors.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Biossólidos , Controle de Doenças Transmissíveis , Ecossistema , Humanos , Microplásticos , Pandemias , Plásticos , Esgotos , Águas Residuárias
16.
Chemosphere ; 294: 133707, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066079

RESUMO

This study explores the recovery of resources and energy from sewage sludge through the production of sludge-based activated carbon (SBAC) considering circular economy principles. The SBAC production costs were estimated under three scenarios considering various sludge dewatering/drying schemes to determine the production feasibility and its role in the circular economy. SBAC was tested in the removal of a mixture of nine commonly detected poly- and perfluoroalkyl substances (PFASs) in environmentally relevant concentrations of ∽50 µg/L in comparison to commercially available activated carbon (AC) using 5 mg of sorbent and 5 mL of a nine-PFAS mixture in deionised water. SBAC can be produced at approximately 1.2 US $/kg, which is substantially lower than the average production cost of commercial AC of >3 US $/kg. A net revenue ranging from 2 to 7 US $/kg SBAC was estimated by recycling the produced non-condensable gases and bio-oil to produce energy and selling the SBAC. Batch adsorption tests showed that the PFASs removal of SBAC was superior to that of granular AC and similar to that of powdered AC, reaching >91% to below the detection limit. The kinetics tests revealed that adsorption by SBAC and AC occurred within 15 min. The overall results demonstrate the potential of SBAC as an effective sorbent for PFASs, achieving waste-to-resources circular economy via resource and energy recovery from sewage sludge, eliminating sludge disposal and contaminant-leaching to the environment, and in enhancing the quality of wastewater effluent before discharge.


Assuntos
Fluorocarbonos , Esgotos , Adsorção , Carvão Vegetal , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
17.
Chemosphere ; 271: 129808, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736226

RESUMO

Pb, Ni, and Co are among the most toxic heavy metals that pose direct risks to humans and biota. There are no published studies on biochars produced at low temperatures (i.e., 300 °C), which possess high sorption capacity for heavy metal remediation and reclamation of contaminated sandy soils. This research studied the effect of catalytic microwave pyrolysis of switchgrass (SG) using bentonite and K3PO4 to produce biochar at low temperature (300 °C) with high sorption capacity for reducing the phytotoxicity of heavy metals, and investigated the synergistic effects of catalyst mixture on biochar sorption capacity. The quality of the biochars was examined in terms of their impacts on plant growth, reducing phytotoxicity and uptake of heavy metals in sandy soil spiked with Pb, Ni, and Co. All catalysts increased the micropore surface area and cation-exchange capacity of biochars, and resulted in biochars rich in plant nutrients, which not only decreased heavy metal phytotoxicity, but also boosted plant growth in the spiked soil by up to 140% compared to the sample without biochar. By mixing bentonite and K3PO4 with SG during microwave pyrolysis, the efficacy of biochar in reducing phytotoxicity and heavy metals uptake was further enhanced because of the highest micropore surface area (402 m2/g), moderate contents of Ca, Mg, K, and Fe for ion-exchange and moderate concentration of phosphorus for the formation of insoluble heavy metal compounds. Generally, the biochar created at 300 °C (300-30KP) showed similar performance to the biochar created at 400 °C (400-30KP) in terms of reducing heavy metal bioavailability.


Assuntos
Metais Pesados , Poluentes do Solo , Carvão Vegetal , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Micro-Ondas , Pirólise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
18.
Front Bioeng Biotechnol ; 8: 615134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381500

RESUMO

This paper studied the synergistic effects of catalyst mixtures on biomass catalytic pyrolysis in comparison with the single catalyst in a microwave reactor and a TGA. In general, positive synergistic effects were identified based on increased mass loss rate, reduced activation energy, and improved bio-oil quality compared to the case with a single catalyst at higher catalyst loads. 10KP/10Bento (a mixture of 10% K3PO4 and 10% bentonite) increased the mass loss rate by 85 and 45% at heating rates of 100 and 25°C/min, respectively, compared to switchgrass without catalyst. The activation energy for 10KP/10Bento and 10KP/10Clino (a mixture of 10% K3PO4 and 10% clinoptilolite) was slightly lower or similar to other catalysts at 30 wt.% load. The reduction in the activation energy by the catalyst mixture was higher at 100°C/min than 25°C/min due to the improved catalytic activity at higher heating rates. Synergistic effects are also reflected in the improved properties of bio-oil, as acids, aldehydes, and anhydrosugars were significantly decreased, whereas phenol and aromatic compounds were substantially increased. 30KP (30% K3PO4) and 10KP/10Bento increased the content of alkylated phenols by 341 and 207%, respectively, in comparison with switchgrass without catalyst. Finally, the use of catalyst mixtures improved the catalytic performance markedly, which shows the potential to reduce the production cost of bio-oil and biochar from microwave catalytic pyrolysis.

19.
Environ Pollut ; 230: 329-338, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28668594

RESUMO

Microwave-assisted catalytic pyrolysis was investigated using K3PO4 and clinoptilolite to enhance biochar sorption affinity for heavy metals. The performance of resulting biochar samples was characterized through their effects on plant growth, bioavailability, phytotoxicity, and uptake of heavy metals in a sandy soil contaminated with Pb, Ni, and Co. The produced biochars have high cation-exchange capacity (CEC) and surface area, and rich in plant nutrients, which not only reduced heavy metals (Pb, Ni, and Co), bioavailability and phytotoxicity, but also increased plant growth rate by up to 145%. The effectiveness of biochar in terms of reduced phytotoxicity and plant uptake of heavy metals was further improved by mixing K3PO4 and clinoptilolite with biomass through microwave pyrolysis. This may be due to the predominance of different mechanisms as 10KP/10Clino biochar has the highest micropore surface area (405 m2/g), high concentrations of K (206 g/kg), Ca (26.5 g/kg), Mg (6.2 g/kg) and Fe (11.9 g/kg) for ion-exchange and high phosphorus content (79.8 g/kg) for forming insoluble compounds with heavy metals. The largest wheat shoot length (143 mm) and lowest extracted amounts of Pb (107 mg/kg), Ni (2.4 mg/kg) and Co (63.9 mg/kg) were also obtained by using 10KP/10Clino biochar at 2 wt% load; while the smallest shoot length (68 mm) and highest extracted amounts of heavy metals (Pb 408 mg/kg, Ni 15 mg/kg and Co 148 mg/kg) for the samples treated with biochars were observed for soils mixed with 1 wt% 10Clino biochar. Strong negative correlations were also observed between biochar micropore surface area, CEC and the extracted amounts of heavy metals. Microwave-assisted catalytic pyrolysis of biomass has a great potential for producing biochar with high sorption affinity for heavy metals and rich nutrient contents using properly selected catalysts/additives that can increase microwave heating rate and improve biochar and bio-oil properties.


Assuntos
Carvão Vegetal/química , Metais Pesados/análise , Poluentes do Solo/análise , Biomassa , Poluição Ambiental , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Fósforo , Desenvolvimento Vegetal , Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Triticum , Zeolitas
20.
Sci Total Environ ; 566-567: 387-397, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27232966

RESUMO

Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K3PO4, clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10wt.% K3PO4+10 wt.% clinoptilolite as catalysts to the soil at 2wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10wt% clinoptilolite at 400°C, and 30wt% K3PO4 at 300°C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...