Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2022: 4972622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267815

RESUMO

Salinization of aquatic ecosystem, abrupt climate change, and anthropogenic activities cause adverse impact on agricultural land/soil as well as the aquaculture industry. This experimental study was designed to evaluate different biomarkers of oxidative stress, antioxidant enzymes, and genotoxic potential of diverse salinities of brackish water on freshwater fish. A total of 84 fresh water mrigal carp (Cirrhinus mrigala) were randomly segregated and maintained in four groups (T0, T1, T2, and T3) in a glass aquarium under similar laboratory conditions at various salinity levels (0, 3, 5, and 7 parts per thousand) to determine the pathological influence of brackish water. All the fish in groups T1, T2, and T3 were exposed to various salinity levels of brackish water for a period of 90 days while the fish of group T0 served as the control group. The experimental fish reared in different groups T1, T2, and T3 displayed various physical and behavioral ailments. The results revealed significantly augmented quantity of different oxidative stress indicators including reactive oxygen species (ROS) and thiobarbituric acid reactive substance (TBARS) in different visceral tissues (kidneys, liver, and gills) of exposed fish. Different antioxidant enzymes such as reduced glutathione (GSH), peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) along with total proteins were remarkably reduced in the kidneys, gills, and liver tissues. Results showed significantly increased values of different nuclear abnormalities (erythrocyte with micronucleus, erythrocyte with condensed nucleus, and erythrocyte with lobed nucleus) and morphological changes (pear shaped erythrocyte, spindle-shaped erythrocytes, and spherocyte) in red blood cells of experimental fish. The results on genotoxic effects exhibited significantly increased DNA damage in isolated cells of liver, kidneys, and gills of exposed fish. The findings of our experimental research suggested that brackish water causes adverse toxicological impacts on different visceral tissues of fresh water fish at higher salinity level through disruption and disorder of physiological and biochemical markers.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Catalase/metabolismo , Antioxidantes/farmacologia , Carpas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Ecossistema , Poluentes Químicos da Água/toxicidade , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Eritrócitos/metabolismo , Fígado/metabolismo , Águas Salinas , Biomarcadores/metabolismo , Solo
2.
Biomed Res Int ; 2022: 7140909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898677

RESUMO

Brucellosis is a well-known and harmful zoonotic disease that poses a severe threat to public health and wild and dairy animals. Due to a lack of monitoring and awareness, disease incidence has increased. Therefore, this study was conducted for the first time to ascertain the status of seroprevalence of brucellosis, hematological, oxidative stress, and antioxidant enzymes in different breeds of cattle reared under tropical-desert conditions in Pakistan. This study comprised 570 cattle of different breeds. We recorded some epidemiological traits, including age and gender. The blood samples were obtained from all the cattle, screened with RBPT, and then confirmed by ELISA and PCR. The results recorded an overall 11.75%, 10.7%, and 9.64% prevalence of brucellosis based on RBPT, ELISA, and PCR. We obtained nonsignificant results in different age and sex groups of cattle. The results showed significantly (P ≤ 0.05) lower values of erythrocyte counts, hemoglobin quantity, hematocrit, lymphocytes, and monocytes in infected cases. The results showed that the total leukocyte and neutrophil cells significantly (P ≤ 0.05) increased. The lipid peroxidation parameters (MDA- and NO-scavenging activity of erythrocyte) increased significantly (P ≤ 0.05) in infected cattle, whereas significantly reduced antioxidant enzymes like SOD, RGSH, and CAT were. Similarly, significantly lower serum albumin levels and total serum proteins were recorded in infected cattle.


Assuntos
Antioxidantes , Brucelose , Animais , Brucelose/epidemiologia , Brucelose/veterinária , Bovinos , Estresse Oxidativo , Paquistão/epidemiologia , Fatores de Risco , Estudos Soroepidemiológicos
3.
Biomed Res Int ; 2022: 7601463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692585

RESUMO

Mycobacterium bovis (M. bovis) being the main cause of animal tuberculosis is a complex infectious agent and can be a cause of zoonotic tuberculosis zoonosis in public health. To date, the uncommon infection in public health due to M. bovis still is a great challenge to both veterinary and medical professions and requires a careful diagnosis and confirmation of the bacterium. Therefore, this study for the first time reports the clinical, gross, histopathological, and molecular based confirmation of M. bovis infection in wildlife animals (nilgai). Prior to death, the morbid animal showed severe pneumonic ailments like moist cough, thick nasal exudates, and dyspnoea. At necropsy, enlargement of mandibular cervical and mesenteric lymph nodes was observed. Different macroscopic lesions such as congestion and hyperaemia, creamy white and catarrhal exudates in trachea, consolidation, grey and red hepatisation of lungs, and micro- and macrogranulomatous tubercles containing caseous materials in lungs were observed. The heart of morbid animal showed congestions, myocarditis, and a copious amount of straw-colored fluid in the pericardial sac. At the microscopic level, lungs indicated granulomatous inflammatory response, presence of multinucleated giant cells, fibrosis, and punctuation of alveoli with chronic inflammatory cells. Histopathological examination of various sections of the heart of the infected animal showed chronic inflammatory response consisting of chronic inflammatory cells like monocyte, lymphocytes, and fibroblasts along with noncalcified eosinophilic materials. At the molecular level, M. bovis infection was confirmed in various tissues like the heart, lungs, cervical, and mesenteric lymph nodes in morbid animals. In conclusion, based on our results, it can be suggested that more molecular based epidemiological studies are crucial to know the exact cause of pulmonary and cervical tuberculosis in wild animals.


Assuntos
Mycobacterium bovis , Tuberculose , Animais , Animais Selvagens , Pulmão/patologia , Linfonodos/patologia , Tuberculose/microbiologia
4.
Biomed Res Int ; 2022: 5367125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655475

RESUMO

The renin-angiotensin system (RAS) is involved in body fluid regulation, but one of its enzymes, angiotensin-converting enzyme (ACE), indirectly causes hypertension by constricting blood vessels. Autoimmune illness is linked to the increased risk of hypertension and cardiovascular disease. In this study, ACE-inhibiting peptides were studied from Artemisia annua proteins. In silico hydrolysis of proteins was performed by BIOPEP-UWM using proteolytic enzymes from plant, microbial, and digestive sources. The physicochemical properties of 1160 peptides were determined using the peptide package of R studio. Di- and tripeptides were mostly released with a molecular weight of 170 to 350 Da. PeptideRanker was used to select 16 peptides from a pool of 1160 peptides based on their likelihood of being bioactive. Molecular docking was performed by DS 2020 and AutoDock Vina, which revealed that the stability of the ligand-receptor complex is due to hydrogen bonding and electrostatic and hydrophobic interactions. Their binding energies ranged from -31.81 to -20.09 kJ/mol. For drug-likeness evaluation, an online tool SwissADME was used that follows the ADME rule (absorption, distribution, metabolism, and excretion) to check the pharmacokinetics and drug-likeness of the compound. In the future, the released peptides can be used to make functional nutraceutical foods against hypertension.


Assuntos
Artemisia annua , Hipertensão , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Hipertensão/tratamento farmacológico , Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas
5.
J Biotechnol ; 166(3): 88-96, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23643479

RESUMO

Plants transformed with single Bt gene are liable to develop insect resistance and this has already been reported in a number of studies carried out around the world where Bt cotton was cultivated on commercial scale. Later, it was envisaged to transform plants with more than one Bt genes in order to combat with resistant larvae. This approach seems valid as various Bt genes possess different binding domains which could delay the likely hazards of insect resistance against a particular Bt toxin. But it is difficult under field conditions to develop homozygous plants expressing all Bt genes equally after many generations without undergoing recombination effects. A number of researches claiming to transform plants from three to seven transgenes in a single plant were reported during the last decade but none has yet applied for patent of homozygous transgenic lines. A better strategy might be to use hybrid-Bt gene(s) modified for improved lectin-binding domains to boost Bt receptor sites in insect midgut. These recombinant-Bt gene(s) would express different lectin domains in a single polypeptide and it is relatively easy to develop homozygous transgenic lines under field conditions. Enhanced chloroplast-localized expression of hybrid-Bt gene would leave no room for insects to develop resistance. We devised and successfully applied this strategy in cotton (Gossypium hirsutum) and data up to T3 generation showed that our transgenic cotton plants were displaying enhanced chloroplast-targeted Cry1Ac-RB expression. Laboratory and field bioassays gave promising results against American bollworm (Heliothis armigera), pink bollworm (Pictinophora scutigera) and fall armyworm (Spodoptera frugiperda) that otherwise, were reported to have evolved resistance against Cry1Ac toxin. Elevated levels of hybrid-Bt toxin were confirmed by ELISA of chloroplast-enriched protein samples extracted from leaves of transgenic cotton lines. While, localization of recombinant Cry1Ac-RB protein in chloroplast was established through confocal laser scanning microscopy.


Assuntos
Agrobacterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Cloroplastos/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Gossypium/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Controle de Insetos/métodos , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Controle Biológico de Vetores , Animais , Toxinas de Bacillus thuringiensis , Toxinas Bacterianas/genética , Gossypium/metabolismo , Gossypium/microbiologia , Insetos/metabolismo , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Larva/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...