Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 200(1): 375-384, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33641053

RESUMO

The release of heavy metals to the environment increased dramatically with industrialization and rapid economic development, and they have accumulated in aquatic organisms. The current study aimed toe valuate the physiological, immunological, and histological changes of crayfish (Procambarus clarkii) as bio-indicator for water quality. Crayfishes of the filed study group were collected from a polluted area (Rosetta branch, Egypt), where the highest concentration for heavy metals in water was for zinc (Zn). Besides the field study group, other crayfishes were exposed to different doses of ZnSO4 (0, 203, and 406 mg L-g) corresponding to Zn concentration (0, 46.03, and 92.06 mg L-1) respectively in aquariums for consecutive 4 days. Heavy metal concentrations in field water sample were arranged as follows: Zn > Fe> Pb > Cu and Mn > Ni > Co > Cd. The result revealed that Zn bioaccumulation increases significantly with the increase of water Zn concentration among the tested groups compared to the control group, where the highest bioaccumulation in all studied tissues (hepatopancreas, gills, and muscles) was observed in the field group and Zn high-dose group. Also, there was a significant increase in the levels of hemolymph uric acid, urea, creatinine, glucose, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Their highest concentrations were observed in the Zn high-dose group and the field group, while the levels of total protein, albumin, and cholesterol showed a significant decrease among the tested groups as compared with the control group. Their determined lowest concentrations were in the Zn high-dose group and field group. Among tested groups, total hemocytes and granulated hemocytes decreased significantly while hyaline hemocytes increased as compared with the control group. Histological damages were observed in hepatopancreas, gills, and muscles in the field and Zn groups. The present study showed that exposure to Zn caused physiological and histological changes in Procambarus clarkia. We assumed that Procambarus clarkia could be used as a sensitive bioindicator for monitoring water quality criteria.


Assuntos
Astacoidea , Metais Pesados , Animais , Monitoramento Ambiental , Brânquias/química , Metais Pesados/análise , Metais Pesados/toxicidade , Zinco
2.
J Trace Elem Med Biol ; 69: 126895, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785418

RESUMO

BACKGROUND: As a result of the global industrial revolution, contamination of the ecosystem by heavy metals has given rise to one of the most important ecological and organismic problems. The current study aimed to evaluate the effect of Zn contamination on agonistic behavior and oxidative damage of crayfish. METHODS: Crayfishes of the field study group were collected from a polluted area (Rosetta branch), where the highest concentration for heavy metals in water was zinc (Zn). Besides the field study group, other crayfishes were exposed to different doses of ZnSO4 (0, 203, and 406 mg L-1), which corresponding to Zn concentration (0, 46.03, and 92.06 mg L-1) respectively in aquariums for consecutive four days. Agonistic behavior is quantified by decreasing fast retreat, slowly back away and no response, increasing initial claw use, active claw use, approach with the threat, approach without threat, and unrestrained behavior. RESULTS: The result revealed that agonistic behavior increases significantly with the increase of water Zn concentration. Malondialdehyde and catalase levels increased, while glutathione concentration reduced with the increase of Zn concentration. CONCLUSION: Our current study reveals that zinc exposure is capable of inducing an increase in the social status (agonistics behavior) and oxidative stress parameters in Procambarus clarkii. The increase in aggressive behavior may have major population-level consequences given the high mortality experienced by this crayfish.


Assuntos
Astacoidea , Comportamento Animal/efeitos dos fármacos , Metais Pesados , Poluentes Químicos da Água/toxicidade , Zinco , Comportamento Agonístico , Animais , Ecossistema , Estresse Oxidativo , Status Social , Água , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...