Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 61(6): 896-910, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32156719

RESUMO

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Linhagem Celular , Humanos , Lisossomos/metabolismo
2.
Chemistry ; 26(26): 5780-5783, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32092185

RESUMO

Activity of acid sphingomyelinase has been implicated in a number of diseases like acute lung injury, sepsis or metastasis of melanoma cells. Here, we present a sphingomyelinase FRET probe based on FAM/BODIPY dyes for real-time monitoring of acid sphingomyelinase. The probe gives rise to a tremendous increase in fluorescence of the fluorescein FRET donor upon cleavage and we show that this is, to a significant part, due to cleavage-associated phase transition, suggesting a more systematic consideration of such effects for future probe development. The probe allows for the first time to monitor relative sphingomyelinase activities of intact living cells by flow cytometry.


Assuntos
Compostos de Boro/química , Transferência Ressonante de Energia de Fluorescência/métodos , Esfingomielina Fosfodiesterase/química , Citometria de Fluxo , Fluorescência , Humanos , Esfingomielina Fosfodiesterase/metabolismo
3.
Chem Phys Lipids ; 216: 152-161, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30261173

RESUMO

Förster resonance energy transfer (FRET) probes are unique tools in biology, as they allow for a non-destructive monitoring of a certain state of a biomolecule or of an artificial substrate within living cells in real time. FRET substrates indicate their relative cleavage rate and thus the in situ activity of a given enzyme. In contrast to quenched probes or turn-on probes, one of the two separate signals of the FRET probes can be used as internal reference, which makes ratio-imaging and quantitation of cleavage events independent of cellular delivery possible. In this review, we describe the first examples of sphingolipid FRET probes in comparison to different alternative probes. Finally, we give an outlook on future probes and their potential application.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/análise , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/análise , Esfingomielina Fosfodiesterase/metabolismo , Corantes Fluorescentes/química , Humanos , Esfingolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...