Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868055

RESUMO

In the 1920s, Lewis Stadler initiated the introduction of permanent improvements to the genetic makeup of irradiated plants. Since then, studies related to breeding mutations have grown, as efforts have been made to expand and improve crop productivity and quality. Stadler's discovery began with x-rays on corn and barley and later extended to the use of gamma-rays, thermal, and fast neutrons in crops. Radiation has since been shown to be an effective and unique method for increasing the genetic variability of species, including rice. Numerous systematic reviews have been conducted on the impact of physical mutagens on the production and grain quality of rice in Southeast Asia. However, the existing literature still lacks information on the type of radiation used, the rice planting materials used, the dosage of physical mutagens, and the differences in mutated characteristics. Therefore, this article aims to review existing literature on the use of physical mutagens in rice crops in Southeast Asian countries. Guided by the PRISMA Statement review method, 28 primary studies were identified through a systematic review of the Scopus, Science Direct, Emerald Insight, Multidisciplinary Digital Publishing, and MDPI journal databases published between 2016 and 2020. The results show that 96% of the articles used seeds as planting materials, and 80% of the articles focused on gamma-rays as a source of physical mutagens. The optimal dosage of gamma-rays applied was around 100 to 250 Gy to improve plant development, abiotic stress, biochemical properties, and nutritional and industrial quality of rice.


Assuntos
Mutagênicos , Oryza , Oryza/genética , Melhoramento Vegetal , Mutação , Produtos Agrícolas/genética
2.
PLoS One ; 16(12): e0259649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972119

RESUMO

This paper provides the details of a study on the effects of electron radiation on the Performance of Inters-satellite Optical Wireless Communication (IsOWC). Academia and industry focus on solutions that can improve performance and reduce the cost of IsWOC systems. Spacecraft, space stations, satellites, and astronauts are exposed to an increased level of radiation when in space, so it is essential to evaluate the risks and performance effects associated with extended radiation exposures in missions and space travel in general. This investigation focuses on LEO, especially in the near-equatorial radiation environment. Radiation experiments supported with simulations have made it possible to obtain and evaluate the electron radiation impact on optoelectronics at the device level and system level performances. The electron radiation has induced a system degradation of 70%. This result demonstrates the importance of such an investigation to predict and take necessary and suitable reliable quality service for future space missions.


Assuntos
Elétrons , Óptica e Fotônica , Comunicações Via Satélite , Tecnologia sem Fio , Simulação por Computador , Radiação Cósmica , Lasers
3.
MethodsX ; 5: 1346-1363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416978

RESUMO

This paper describes the development of a custom-designed underwater scanner to support the experimental works for characterizing irradiated fuel stored in the TRIGA PUSPATI pool by means of radiography technique. Materials used to build the scanner are aluminum 6061, lead and teflon. Three main units that make up the scanner are rig structure, arm block and collimator. Collimator is designed to control radiation exposure by opening and closing the shutter. The experimental works were conducted underwater at 5-m depth hence water tightness is one of the main design criteria. Radiation in terms of gamma energy is captured by radiography film which after development and processing revealed the image of the radiation impact in terms of pixel and gray value. The film size used is 4in x 8in which was slot in the collimator. To validate the scanner, fuel element containing 8.5 wt% and 12 wt% enriched Uranium 235 were used. It was found that the experimental output is consistent with the fuel type and confirmed that the scanner is viable for fuel characterization study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...