Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(13): 12445-12457, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37347939

RESUMO

Membrane-based salinity gradient energy generation from the osmotic potential at the interface of a river and seawater through reverse electrodialysis is a promising route for realizing clean, abundant, and sustainable energy. Membrane permeability and selective ion transport are crucial for efficient osmotic energy harvesting. However, balancing these two parameters in the membrane design and synthesis remains challenging. Herein, a hybridized bilayer metal-organic frameworks (MOF-on-MOF) membrane is fabricated for efficient transmembrane conductance for enhanced osmotic power generation. The heterogeneous membrane is constructed from imidazolate framework-8 (ZIF-8) deposited on a UiO-66-NH2 membrane intercalated with poly(sodium-4-styrenesulfonate) (PSS). The angstrom-scale cavities in the ZIF-8 layer promote ion selectivity by size exclusion, and the PSS-intercalated UiO-66-NH2 film ensures cation permeability. The synergistic effect is a simultaneous improvement in ion transport and selectivity from an overlapped electric double layer generating 40.01 W/m2 and 665 A/m2 permeability from a 500-fold concentration gradient interface at 3 KΩ and 9.20 W/m2 from mixing of real sea-river water. This work demonstrates a rational design strategy for hybrid membranes with improved ion selectivity and permeability for the water-energy nexus.

2.
Adv Mater ; 34(9): e2107878, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34921462

RESUMO

Biological ion channels feature angstrom-scale asymmetrical cavity structures, which are the key to achieving highly efficient separation and sensing of alkali metal ions from aqueous resources. The clean energy future and lithium-based energy storage systems heavily rely on highly efficient ionic separations. However, artificial recreation of such a sophisticated biostructure has been technically challenging. Here, a highly tunable design concept is introduced to fabricate monovalent ion-selective membranes with asymmetric sub-nanometer pores in which energy barriers are implanted. The energy barriers act against ionic movements, which hold the target ion while facilitating the transport of competing ions. The membrane consists of bilayer metal-organic frameworks (MOF-on-MOF), possessing a 6 to 3.4-angstrom passable cavity structure. The ionic current measurements exhibit an unprecedented ionic current rectification ratio of above 100 with exceptionally high selectivity ratios of 84 and 80 for K+ /Li+ and Na+ / Li+ , respectively (1.14 Li+ mol m-2 h-1 ). Furthermore, using quantum mechanics/molecular mechanics, it is shown that the combined effect of spatial hindrance and nucleophilic entrapment to induce energy surge baffles is responsible for the membrane's ultrahigh selectivity and ion rectification. This work demonstrates a striking advance in developing monovalent ion-selective channels and has implications in sensing, energy storage, and separation technologies.

3.
Int J Nanomedicine ; 15: 10029-10043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335393

RESUMO

PURPOSE: Despite the significant advances in modeling of biomechanical aspects of cell microenvironment, it remains a major challenge to precisely mimic the physiological condition of the particular cell niche. Here, the metal-organic frameworks (MOFs) have been introduced as a feasible platform for multifactorial control of cell-substrate interaction, given the wide range of physical and mechanical properties of MOF materials and their structural flexibility. RESULTS: In situ crystallization of zeolitic imidazolate framework-8 (ZIF-8) on the polydopamine (PDA)-modified membrane significantly raised surface energy, wettability, roughness, and stiffness of the substrate. This modulation led to an almost twofold increment in the primary attachment of dental pulp stem cells (DPSCs) compare to conventional plastic culture dishes. The findings indicate that polypropylene (PP) membrane modified by PDA/ZIF-8 coating effectively supports the growth and proliferation of DPSCs at a substantial rate. Further analysis also displayed the exaggerated multilineage differentiation of DPSCs with amplified level of autocrine cell fate determination signals, like BSP1, BMP2, PPARG, FABP4, ACAN, and COL2A. Notably, osteogenic markers were dramatically overexpressed (more than 100-folds rather than tissue culture plate) in response to biomechanical characteristics of the ZIF-8 layer. CONCLUSION: Hence, surface modification of cell culture platforms with MOF nanostructures proposed as a powerful nanomedical approach for selectively guiding stem cells for tissue regeneration. In particular, PP/PDA/ZIF-8 membrane presented ideal characteristics for using as a barrier membrane for guided bone regeneration (GBR) in periodontal tissue engineering.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Regeneração Tecidual Guiada/métodos , Membranas Artificiais , Polipropilenos/química , Polipropilenos/farmacologia , Zeolitas/química , Diferenciação Celular/efeitos dos fármacos , Indóis/química , Osteogênese/efeitos dos fármacos , Polímeros/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
4.
ACS Appl Mater Interfaces ; 11(2): 1807-1820, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30525376

RESUMO

Recently, the biomineralization of enzyme in metal-organic-framework (enzyme-MOF) composite have shown a great potential to increase enzymes stability without compromising their activity; hence, it is desirable for its applications in biosensing devices. Nonetheless, most of the enzyme-MOF research has been focusing on enzyme encapsulation in particle form, which limits its synthesis flexibility for practical applications because of its requirement for postsynthesis immobilization onto solid support. Therefore, to develop a diagnostic device out of the biomineralized enzyme, surface patterning and integration of microfluidic system offers many advantages. In this work, mussel-inspired polydopamine/polyethyleneimine (PDA/PEI) coating is employed to pattern enzyme-MOF in microfluidic channels and exploit the wettability gradient for "pumpless transportation" effect. As a proof of concept, we combine a cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes to detect glucose into a patterned zeolitic imidazole framework-8 (ZIF-8) thin film on a flexible polymeric substrate. The results show that the ZIF-8/GOx&HRP in situ composites on PDA/PEI patterns have good acid and thermal stability compared with samples without ZIF-8. ZIF-8/GOx&HRP in situ shows high selectivity toward glucose, linear sensitivity of 0.00303 Abs/µM, and the limit of detection of 8 µM glucose concentration. An unexpected benefit of this approach is the ability of the ZIF-8 thin-film structure to provide a diffusion limiting effect for substrate influx, thus, producing high range of linear response range (8 µM to 5 mM of glucose). This work provides insights into the spatial location of the enzymes in MOF thin films and the potential of such patterning techniques for MOF-based biosensors using other types of biological elements such as antibodies and aptamers.


Assuntos
Biomineralização , Técnicas Biossensoriais/métodos , Glucose/análise , Dispositivos Lab-On-A-Chip , Estruturas Metalorgânicas/química , Eletrodos , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Indóis/química , Microfluídica , Polietilenoimina/química , Polímeros/química , Zeolitas/química
5.
ACS Appl Mater Interfaces ; 9(49): 42806-42815, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29160687

RESUMO

Though enzymatic cascade reactors have been the subject of intense research over the past few years, their application is still limited by the complicated fabrication protocols, unsatisfactory stability and lack of effective reactor designs. In addition, the spatial positioning of the cascade reactor has so far not been investigated, which is of significant importance for biphase catalytic reaction systems. Inspired by the Janus properties of the lipid cellular membrane, here we show a highly efficient Janus gas-liquid reactor for CO2 hydration and conversion. Within the Janus reactor, nanocascades containing the nanoscale compartmentalized carbonic anhydrase and formic dehydrogenase were positioned at a well-defined gas-liquid interface, with a high substrate concentration gradient. The Janus reactor exhibited 2.5 times higher CO2 hydration efficiency compared with the conventional gas-liquid contactor with pristine membranes, and the formic acid conversion rate can reach approximately 90%. Through this work, we provide evidence that the spatial arrangement of the nanocascade is also crucial to efficient reactions, and the Janus reactor can be a promising candidate for the biphase catalytic reactions in environmental, biological and energy aspects.


Assuntos
Dióxido de Carbono/química , Reatores Biológicos , Anidrases Carbônicas , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...