Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279890

RESUMO

Microvascular thrombosis is a typical symptom of COVID-19 and shows similarities to thrombosis. Using a microfluidic imaging flow cytometer, we measured the blood of 181 COVID-19 samples and 101 non-COVID-19 thrombosis samples, resulting in a total of 6.3 million bright-field images. We trained a convolutional neural network to distinguish single platelets, platelet aggregates, and white blood cells and performed classical image analysis for each subpopulation individually. Based on derived single-cell features for each population, we trained machine learning models for classification between COVID-19 and non-COVID-19 thrombosis, resulting in a patient testing accuracy of 75%. This result indicates that platelet formation differs between COVID-19 and non-COVID-19 thrombosis. All analysis steps were optimized for efficiency and implemented in an easy-to-use plugin for the image viewer napari, allowing the entire analysis to be performed within seconds on mid-range computers, which could be used for real-time diagnosis.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256354

RESUMO

A characteristic clinical feature of COVID-19 is the frequent incidence of microvascular thrombosis. In fact, COVID-19 autopsy reports have shown widespread thrombotic microangiopathy characterized by extensive diffuse microthrombi within peripheral capillaries and arterioles in lungs, hearts, and other organs, resulting in multiorgan failure. However, the underlying process of COVID-19-associated microvascular thrombosis remains elusive due to the lack of tools to statistically examine platelet aggregation (i.e., the initiation of microthrombus formation) in detail. Here we present a method for massive image-based profiling, temporal monitoring, and big data analysis of circulating platelets and platelet aggregates in the blood of COVID-19 patients at single-cell resolution, to provide previously unattainable insights into the disease. In fact, our analysis of the image data from 110 hospitalized patients shows the anomalous presence of excessive platelet aggregates in nearly 90% of all COVID-19 patients. Furthermore, results indicate strong links between the concentration of platelet aggregates and the severity, mortality, and respiratory condition of patients with COVID-19. Finally, high-dimensional analysis based on deep learning shows that the disease behaves as systemic thrombosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...