Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(9): 3978-3984, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126640

RESUMO

Nanophotonics can boost the weak circular dichroism of chiral molecules. One mechanism for enhanced chiral sensing relies on using a resonator to create fields with high optical chirality at the molecular position. Here, we elucidate how the reverse interaction between molecules and the resonator, called chirality transfer, can produce stronger circular dichroism. The chiral analyte modifies the electric and magnetic dipole moments of the resonator, imprinting a chiral response on an otherwise achiral resonance. We demonstrate that silicon nanoparticles and metasurfaces tailored for chirality transfer generate chiroptical signals orders of magnitude higher than the contribution from optical chirality alone. We derive closed-form equations for the dependence of chirality transfer on molecular chirality, molecule-resonator distance, and Mie coefficients. We propose a dielectric metasurface for a 900-fold circular dichroism enhancement on the basis of these principles. Finally, we identify a fundamental limit to chirality transfer. Our findings thus establish key concepts for nanophotonic chiral sensing.

2.
ACS Photonics ; 8(6): 1754-1762, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34164565

RESUMO

The discrimination of enantiomers is crucial in biochemistry. However, chiral sensing faces significant limitations due to inherently weak chiroptical signals. Nanophotonics is a promising solution to enhance sensitivity thanks to increased optical chirality maximized by strong electric and magnetic fields. Metallic and dielectric nanoparticles can separately provide electric and magnetic resonances. Here we propose their synergistic combination in hybrid metal-dielectric nanostructures to exploit their dual character for superchiral fields beyond the limits of single particles. For optimal optical chirality, in addition to maximization of the resonance strength, the resonances must spectrally coincide. Simultaneously, their electric and magnetic fields must be parallel and π/2 out of phase and spatially overlap. We demonstrate that the interplay between the strength of the resonances and these optimal conditions constrains the attainable optical chirality in resonant systems. Starting from a simple symmetric nanodimer, we derive closed-form expressions elucidating its fundamental limits of optical chirality. Building on the trade-offs of different classes of dimers, we then suggest an asymmetric dual dimer based on realistic materials. These dual nanoresonators provide strong and decoupled electric and magnetic resonances together with optimal conditions for chiral fields. Finally, we introduce more complex dual building blocks for a metasurface with a record 300-fold enhancement of local optical chirality in nanoscale gaps, enabling circular dichroism enhancement by a factor of 20. By combining analytical insight and practical designs, our results put forward hybrid resonators to increase chiral sensitivity, particularly for small molecular quantities.

3.
Opt Express ; 28(24): 36643-36655, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379754

RESUMO

Despite the existence of various neural recording and mapping techniques, there is an open territory for the emergence of novel techniques. The current neural imaging and recording techniques suffer from invasiveness, a time-consuming labeling process, poor spatial/ temporal resolution, and noisy signals. Among others, neuroplasmonics is a label-free and nontoxic recording technique with no issue of photo-bleaching or signal-averaging. We introduced an integrated plasmonic-ellipsometry platform for membrane activity detection with cost-effective and high-quality grating extracted from commercial DVDs. With ellipsometry technique, one can measure both amplitude (intensity) and phase difference of reflected light simultaneously with high signal to noise ratio close to surface plasmon resonances, which leads to the enhancement of sensitivity in plasmonic techniques. We cultured three different types of cells (primary hippocampal neurons, neuroblastoma SH-SY5Y cells, and human embryonic kidney 293 (HEK293) cells) on the grating surface. By introducing KCl solution as a chemical stimulus, we can differentiate the neural activity of distinct cell types and observe the signaling event in a label-free, optical recording platform. This method has potential applications in recording neural signal activity without labeling and stimulation artifacts.


Assuntos
Técnicas Biossensoriais/métodos , Membrana Celular/fisiologia , Hipocampo/citologia , Neuroblastoma/patologia , Neurônios/citologia , Ressonância de Plasmônio de Superfície/métodos , Animais , Células HEK293/citologia , Humanos , Ratos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...