Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 8(4): 1616-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22248526

RESUMO

Reinforcing biodegradable polymers with phosphate-based glass fibres (PGF) is of interest for bone repair and regeneration. In addition to increasing the mechanical properties, PGF can also release bioinorganics, as they are water soluble, a property that may be controllably translated into a fully degradable composite. Herein, the effect of Si and Fe on the solubility of calcium-containing phosphate-based glasses (PG) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x=0, 5 and 10 mol.%) were investigated. On replacing SiO(2) with Fe(2)O(3), there was an increase in the glass transition temperature and density of the PG, suggesting greater crosslinking of the phosphate chains. This significantly reduced the dissolution rates of degradation and ion release. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into polycaprolactone (PCL). Initially, the flexural strength and modulus significantly increased with PGF incorporation. In deionized water, PCL-Fe(5)Si(5) displayed a significantly greater weight loss and ion release compared with PCL-Fe10. In simulated body fluid, brushite was formed only on the surface of PCL-Fe(5)Si(5). Dynamic mechanical analysis in phosphate buffered saline (PBS) at 37°C revealed that the PCL-Fe10 storage modulus (E') was unchanged up to day 7, whereas the onset of PCL-Fe(5)Si(5)E' decrease occurred at day 4. At longer-term ageing in PBS, PCL-Fe(5)Si(5) flexural strength and modulus decreased significantly. MC3T3-E1 preosteoblasts seeded onto PCL-PGF grew up to day 7 in culture. PGF can be used to control the properties of biodegradable composites for potential application as bone fracture fixation devices.


Assuntos
Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Vidro/química , Ferro/farmacologia , Poliésteres/farmacologia , Silício/farmacologia , Animais , Líquidos Corporais/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Análise Diferencial Térmica , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Íons , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Temperatura , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...