Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 217: 106445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342386

RESUMO

INTRODUCTION: The aim of this study was to compare two CRISPR/Cas9-based orthogonal strategies, paired-Cas9 nickase (paired-Cas9n) and RNA-guided FokI (RFN), in targeting 18S rDNA locus in Chinese hamster ovary (CHO) cells and precisely integrating a bicistronic anti-CD52 monoclonal antibody (mAb) expression cassette into this locus. METHODS: T7E1 and high-resolution melt (HRM) assays were used to compare the ability of mentioned systems in inducing double-strand break (DSB) at the target site. Moreover, 5'- and 3'-junction polymerase chain reactions (PCR) were used to verify the accuracy of the targeted integration of the mAb expression cassette into the 18S rDNA locus. Finally, anti-CD52 mAb gene copy number was measured and, its expression was analyzed using ELISA and western blot assays. RESULTS: Our results indicated that both paired-Cas9n and RFN induced DSB at the target site albeit RFN performance was slightly more efficient in HRM analysis. We also confirmed that the anti-CD52 mAb cassette was accurately integrated at the 18S rDNA locus and the mAb was expressed successfully in CHO cells. CONCLUSION: Taken together, our findings elucidated that both paired-Cas9n and RFN genome editing tools are promising in targeting the 18S rDNA locus. Site specific integration of the bicistronic anti-CD52 mAb expression cassette at this locus in the CHO-K1 cells was obtained, using RFN. Moreover, proper expression of the anti-CD52 mAb at the 18S rDNA target site can be achieved using the bicistronic internal ribosome entry site (IRES)-based vector system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Cricetinae , Animais , Edição de Genes/métodos , Cricetulus , Células CHO , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , DNA Ribossômico , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
2.
Bioimpacts ; 12(4): 371-391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35975201

RESUMO

Introduction: Clustered regularly interspaced short palindromic repeat and its associated protein (CRISPR-Cas)-based technologies generate targeted modifications in host genome by inducing site-specific double-strand breaks (DSBs) that can serve as a substrate for homology-directed repair (HDR) in both in vitro and in vivo models. HDR pathway could enhance incorporation of exogenous DNA templates into the CRISPR-Cas9-mediated DSB site. Owing to low rate of HDR pathway, the efficiency of accurate genome editing is diminished. Enhancing the efficiency of HDR can provide fast, easy, and accurate technologies based on CRISPR-Cas9 technologies. Methods: The current study presents an overview of attempts conducted on the precise genome editing strategies based on small molecules and modified CRISPR-Cas9 systems. Results: In order to increase HDR rate in targeted cells, several logical strategies have been introduced such as generating CRISPR effector chimeric proteins, anti-CRISPR proteins, modified Cas9 with donor template, and using validated synthetic or natural small molecules for either inhibiting non-homologous end joining (NHEJ), stimulating HDR, or synchronizing cell cycle. Recently, high-throughput screening methods have been applied for identification of small molecules which along with the CRISPR system can regulate precise genome editing through HDR. Conclusion: The stimulation of HDR components or inhibiting NHEJ can increase the accuracy of CRISPR-Cas-mediated engineering systems. Generating chimeric programmable endonucleases provide this opportunity to direct DNA template close proximity of CRISPR-Cas-mediated DSB. Small molecules and their derivatives can also proficiently block or activate certain DNA repair pathways and bring up novel perspectives for increasing HDR efficiency, especially in human cells. Further, high throughput screening of small molecule libraries could result in more discoveries of promising chemicals that improve HDR efficiency and CRISPR-Cas9 systems.

3.
Mol Biol Rep ; 48(5): 4405-4412, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34089466

RESUMO

Monoclonal antibodies (mAbs) are widely employed as invaluable therapeutics for a vast number of human disorders. Several approaches have been introduced for the improvement of mAb production in Chinese hamster ovary (CHO) cells due to the increasing demand for these products. In this regard, various chromatin-modifying elements such as insulators have been incorporated in the expression vectors to augment mAb expression. In this study, human gamma-satellite insulator containing vectors were utilized for the expression of an anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) mAb in CHO-K1 cells. To this aim, dual expression vectors encoding the antibody light chain (LC) and heavy chain (HC) with or without the insulator element were constructed, and mAb expression was evaluated in transient and stable expression. Based on the results, mAb expression significantly increased in the stable cell pool, and clonal cells developed using the human gamma-satellite insulator. In contrast, transient antibody expression was not affected by the insulator element. Finally, the enhancement of LC and HC mRNA levels was found in the insulator containing stable cell pools using the quantitative real-time-polymerase chain reaction (qRT-PCR). Our findings showed the positive effect of the human gamma-satellite insulator on the stable expression of an anti-PCSK9 immunoglobulin G1 (IgG1) mAb in CHO-K1 cells using dual expression vectors.


Assuntos
Anticorpos Monoclonais/imunologia , DNA Satélite/genética , Vetores Genéticos , Imunoglobulina G/imunologia , Pró-Proteína Convertase 9/imunologia , Animais , Células CHO , Cricetulus , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Plasmídeos , Transfecção
4.
Prep Biochem Biotechnol ; 49(8): 822-829, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156045

RESUMO

Therapeutic monoclonal antibodies (mAbs) have become the dominant products in biopharmaceutical industry. Mammalian cell expression systems including Chinese hamster ovary (CHO) cells are the most commonly used hosts for the production of complex recombinant proteins. However, development of stable, high producing CHO cell lines suffers from the low expression level and instability of the transgene. The increasing efforts in the development of novel therapeutic antibodies and the advent of biosimilars have revealed the necessity for the development of improved platforms for rapid production of products for initial characterization and testing. In line with this premise, vector design and engineering has been applied to improve the expression level and stability of the transgene. This study reports the application of an improved lentiviral vector system containing the human interferon-ß scaffold attachment region (IFN-SAR) for the development of antibody producing stable CHO cells. mAb expressing clones producing 1100 µg/L of IgG1 monoclonal antibody were isolated without extensive screening of a large number of clones. Our results here indicate the positive effects of IFN-SAR on stable mAb expression using lentiviral based expression vectors. We also observed that although IFN-SAR can improve light chain (LC) and heavy chain (HC) gene copy numbers in stable cell pools, mAb expression in single cell clones was not affected by the transgene copy number.


Assuntos
Anticorpos Monoclonais/genética , Clonagem Molecular/métodos , Vetores Genéticos/genética , Lentivirus/genética , Animais , Células CHO , Linhagem Celular , Cricetulus , Dosagem de Genes , Humanos , Proteínas Recombinantes/genética , Transdução Genética
5.
Monoclon Antib Immunodiagn Immunother ; 37(5): 200-206, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30362930

RESUMO

Cell line development is one of the most critical steps in the production of complex recombinant therapeutic proteins such as monoclonal antibodies in mammalian cells. Generation of industrial cell lines is mainly based on the time-consuming and laborious process of selection and screening of a large number of clones. With the increasing demand for therapeutic proteins during the past years, more effort is invested to improve the efficiency of cell line development. In line with this premise, several studies employed expression vector engineering strategies based on incorporation of epigenetic regulatory elements, which can enhance the expression level and stability of the transgenes. Main examples of such elements include ubiquitous chromatin opening elements, scaffold or matrix attachment regions, stabilizing antirepressor elements, and insulators. This work evaluates the utility of the tDNA insulator element for stable expression of an IgG1 monoclonal antibody as well as the enhanced green fluorescent protein (EGFP) reporter gene in Chinese hamster ovary (CHO) cells. Initial analysis of EGFP transfected cells showed improved mean fluorescent intensity in cell pools and single cell clones when tDNA element was included in the expression vector. Our results also indicated up to nine- and sixfold enhancements in antibody titer and specific productivity of clones derived from tDNA containing vectors, respectively. Moreover, improved single cell cloning efficiency was observed for transfectants generated using tDNA harboring expression constructs. Our study clearly shows the beneficial effects of the tDNA insulator on monoclonal antibody expression in CHO cells.


Assuntos
Anticorpos Monoclonais/biossíntese , DNA Bacteriano/genética , Elementos Isolantes/genética , Proteínas Recombinantes/genética , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Células CHO/imunologia , Cricetinae , Cricetulus , DNA Bacteriano/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas de Fluorescência Verde/genética , Humanos , Elementos Isolantes/imunologia , Proteínas Recombinantes/imunologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...