Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 148: 106219, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37951146

RESUMO

In this study, a three-component biofilm for rapid wound dressing consisting of polyvinyl alcohol (PVA)/tannic acid (TA)/with CuO/SiO2 with different percentages (0, 5, 10, and 15 wt% NPs) is evaluated. In addition to controlling bleeding and absorption of blood and wound secretions, it protects the damaged tissue from the attack of microbes. It protects against viruses and thus reduces the treatment time. Analysis of biofilms morphology is performed by Field emission scanning electron microscopy (FE-SEM), phases in biofilms were analyzed by X-ray diffraction (XRD) analysis, chemical bonds, and functional groups are analyzed by Fourier transform infrared (FTIR) spectroscopy, and mechanical tests are performed to evaluate the strength of the samples. The thermogravimetric analysis (TGA) is applied to estimate the thermal stability of the biopolymer films with various percentages of CuO/SiO2 nanoparticles. Also, antibacterial test, bioactivity of the biofilms, the percentage of swelling ratio, and porosity of the samples were examined by immersing the samples in simulated body fluid (SBF) and Phosphate-buffered saline (PBS) for 14 days in vitro. The composite makeup of the TA/PVA sample, comprising 15 wt % CuO/SiO2 and containing 15 wt% of nanoparticles, exhibited superior heat resistance compared to other samples by an increase of 50 °C. This improvement can be attributed to the nanoparticles reaching their saturation point. The swelling ratio was assessed in both SBF and PBS, and in both instances, the sample increased by up to 10 wt% before decreasing, indicating the saturation of the nanoparticles.


Assuntos
Materiais Biocompatíveis , Álcool de Polivinil , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Dióxido de Silício/farmacologia , Polímeros , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Biol Macromol ; 241: 124572, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100326

RESUMO

In this research, gelatin (Ge), tannic acid (TA), acrylic acid (AA) as a matrix are used. Zinc oxide (ZnO) nanoparticles (10, 20, 30, 40 and 50 wt%) and hollow silver nanoparticles along with ascorbic acid (1, 3, and 5 wt%) are considered as reinforcement. In order to prove the functional groups of nanoparticles made from Fourier-transform infrared spectroscopy (FTIR), and determine the existing phases of the powders in the hydrogel, X-ray diffraction (XRD) is used, also to investigate the morphology, size, and porosity of the holes and in the scaffolds, scanning electron microscope analysis is used (FESEM). Then, mechanical tests such as tension and compression test are performed to determine the most optimal state of the composite. Also, the antibacterial test is performed for the manufactured powders and hydrogel, as well as the toxicity test for the fabricated hydrogel. The results show that the sample (30 wt% of zinc oxide and 5 wt% of hollow nanoparticles) is the most optimal hydrogel based on mechanical tests and biological properties.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Porosidade , Gelatina/química , Prata/química , Nanopartículas Metálicas/química , Dióxido de Silício , Pós , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Cicatrização , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
RSC Adv ; 11(52): 32775-32791, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35493577

RESUMO

One of the most significant factors affecting the rapid and effective healing of wounds is the application of appropriate wound dressings. In the present study, novel antibacterial wound dressings are fabricated that consist of Chitosan (CS)/Polyvinyl alcohol (PVA)/Sodium Alginate (SA), which are all biocompatible, functionalized with mesoporous Ag2O/SiO2 and curcumin nanoparticles as reinforcements. In this research nanocomposites are fabricated (0 wt%, 5 wt%, 10 wt%, 15 wt%, and 20 wt% of Ag2O/SiO2). After the composition of nanocomposites using the cross-linked technique, Fourier Transform Infrared (FT-IR) spectroscopy is performed to confirm the functional groups that are added to the polymer at each step. X-ray diffraction (XRD) is done to show the crystallinity of Ag2O/SiO2. Field emission scanning electron microscopy (FE-SEM) studies are performed to demonstrate the morphology of the structure, Energy-dispersive X-ray spectroscopy (EDS) is done to examine the elements in the wound dressing and atomic force microscopy (AFM) study is performed to show surface roughness and pores. Then the nanocomposites with different weight percentages are cultured in three bacteria called Acinetobacter baumannii, Staphylococcus epidermidis, and Proteus mirabilis, all three of which cause skin infections. Finally, by performing the tensile test, the results related to the tensile strength of the wound dressings are examined. The results show that with the increase of Ag2O/SiO2, the mechanical properties, as well as the healing properties of the wound dressing, have increased significantly. Fabricating these nanocomposites helps a lot in treating skin infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...