Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(10): 8639-8651, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535245

RESUMO

Extracellular vesicles (EVs) theranostic potential is under intense investigation. There is a wealth of information highlighting the role that EVs and the secretome play in disease and how these are being utilized for clinical trials and novel therapeutic possibilities. However, understanding of the physiological and pathological roles of EVs remain incomplete. The challenge lies in reaching a consensus concerning standardized quality-controlled isolation, storage, and sample preparation parameters. Interest in circulating EV cargo as diagnostic and prognostic biomarkers is steadily growing. Though promising, various limitations need to be addressed before there can be successful, full-scale therapeutic use of approved EVs. These limitations include obtaining or manufacturing from the appropriate medium (e.g., from bodily fluid or cell culture), loading and isolating EVs, stability, and storage, standardization of processing, and determining potency. This review highlights specific topics, including circulation of abnormal EVs contribute to human disease and the theranostic potential of EVs. Theranostics is defined as a combination of the word's therapeutics and diagnostics and describes how a specific medicine or technique can function as both. Key findings include, (1) EVs and the secretome are future theranostics which will be utilized as both biomarkers for diagnosis and as therapeutics, (2) basic and translational research supports clinical trials utilizing EVs/secretome, and (3) additional investigation is required to fully unmask the theranostic potential of EVs/secretome in specific diseases and injuries.


Assuntos
Vesículas Extracelulares , Humanos , Biomarcadores , Medicina de Precisão , Comunicação Celular , Técnicas de Cultura de Células
2.
J Transl Med ; 17(1): 297, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31464641

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are attractive cell-therapy candidates. Despite their popularity and promise, there is no uniform method of preparation of MSCs. Typically, cells are cryopreserved in liquid nitrogen, thawed, and subsequently administered to a patient with little to no information on their function post-thaw. We hypothesized that a short acclimation period post-thaw will facilitate the recovery of MSC's functional potency. METHODS: Human bone-marrow-derived MSCs were divided into 3 groups: FC (fresh cells; from existing culture); TT (thawed + time; acclimated for 24 h post-thaw); and FT (freshly thawed; thawed and immediately used). The 3 groups were analyzed for their cellular and functional potency. RESULTS: Phenotypic analysis demonstrated a decrease in CD44 and CD105 surface markers in FT MSCs, with no change in the other two groups. All MSCs were able to differentiate down the osteogenic and chondrogenic lineages. In FT cells, metabolic activity and apoptosis was significantly increased with concomitant decrease in cell proliferation; clonogenic capacity; and key regenerative genes. Following 24-h acclimation, apoptosis was significantly reduced in TT cells with a concomitant upregulation in angiogenic and anti-inflammatory genes. While all MSCs significantly arrested T-cell proliferation, the TT MSCs were significantly more potent. Similarly, although all MSCs maintained their anti-inflammatory properties, IFN-γ secretion was significantly diminished in FT cells. CONCLUSIONS: These data demonstrate that FT MSCs maintain their multipotent differentiation capacity, immunomodulatory function, and anti-inflammatory properties; yet, various aspects of cell characteristics and function are deleteriously affected by cryopreservation. Importantly, a 24-h acclimation period 'reactivates' thawed cells to recover their diminished stem-cell function.


Assuntos
Criopreservação , Células-Tronco Mesenquimais/citologia , Anti-Inflamatórios/metabolismo , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Clonais , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Fatores de Tempo
3.
Stem Cells Transl Med ; 8(10): 1092-1106, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31219247

RESUMO

Mesenchymal stem cells (MSCs) are a promising form of therapy for acute respiratory distress syndrome (ARDS). The objective of this study was twofold: (a) to characterize cytokine expression in serum from ARDS subjects receiving MSCs and (b) to determine MSC function following "preconditioning" with ARDS serum. In phase I, serum from three cohorts of animals (uninjured [no ARDS, n = 4], injured untreated [n = 5], and injured treated with approximately 6 million per kilogram MSCs [n = 7]) was analyzed for expression of inflammatory mediators. In phase II, the functional properties of bone marrow porcine MSCs were assessed following "preconditioning" with serum from the three cohorts. In phase III, the findings from the previous phases were validated using human bone marrow MSCs (hBM-MSCs) and lipopolysaccharide (LPS). Serum from injured treated animals had significantly lower levels of interferon-γ and significantly higher levels of interleukin (IL)-1 receptor antagonist (IL-1RA) and IL-6. Similarly, upon exposure to the injured treated serum ex vivo, the MSCs secreted higher levels of IL-1RA and IL-10, dampened the secretion of proinflammatory cytokines, exhibited upregulation of toll-like receptor 4 (TLR-4) and vascular endothelial growth factor (VEGF) genes, and triggered a strong immunomodulatory response via prostaglandin E2 (PGE2 ). hBM-MSCs demonstrated a similar augmented therapeutic function following reconditioning in a LPS milieu. Administration of MSCs modulated the inflammatory milieu following ARDS. Exposure to ARDS serum ex vivo paralleled the trends seen in vivo, which appear to be mediated, in part, through TLR-4 and VEGF and PGE2 . Reconditioning MSCs in their own serum potentiates their immunotherapeutic function, a technique that can be used in clinical applications. Stem Cells Translational Medicine 2019;8:1092-1106.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Síndrome do Desconforto Respiratório/terapia , Animais , Feminino , Humanos , Síndrome do Desconforto Respiratório/patologia , Suínos
4.
Regen Med ; 14(4): 279-293, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31070521

RESUMO

Aim: In this study, we aimed at identifying the optimal conditions for isolation, processing and expansion of mesenchymal stem cells (MSCs). Methods: Porcine bone marrow was obtained from either small- or large-volume bone marrow aspirate (BMA). Next, three BMA processing methods were compared. Finally, the best condition was selected from various culture parameters, including basal media, supplementation and seeding density. Results: Our results demonstrate that a small-volume BMA and direct plating yields significantly higher concentration of MSCs. Basal media supplementation with 10% platelet lysate and seeding density of 1000 cells/cm2 can generate large numbers of multipotent MSCs with augmented function and low population doublings. Conclusion: This work provides guidance for preparation of robust MSCs for future clinical trials.


Assuntos
Separação Celular/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pesquisa Translacional Biomédica , Animais , Células da Medula Óssea/citologia , Contagem de Células , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Feminino , Humanos , Suínos
5.
Cells ; 8(5)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096722

RESUMO

Multipotent mesenchymal stromal cells (MSCs) have emerged as potent therapeutic agents for multiple indications. However, recent evidence indicates that MSC function is compromised in the physiological post-injury milieu. In this study, bone marrow (BM)- and adipose-derived (AD)-MSCs were preconditioned in hypoxia with or without inflammatory mediators to potentiate their immunotherapeutic function in preparation for in vivo delivery. Human MSCs were cultured for 48 hours in either normoxia (21% O2) or hypoxia (2% O2) with or without the addition of Cytomix, thus creating 4 groups: 1) normoxia (21%); 2) Cytomix-normoxia (+21%); 3) hypoxia (2%); and 4) Cytomix-hypoxia (+2%). The 4 MSC groups were subjected to comprehensive evaluation of their characteristics and function. Preconditioning did not alter common MSC surface markers; nonetheless, Cytomix treatment triggered an increase in tissue factor (TF) expression. Moreover, the BM-MSCs and AD-MSCs from the +2% group were not able to differentiate to chondrocytes and osteoblasts, respectively. Following Cytomix preconditioning, the metabolism of MSCs was significantly increased while viability was decreased in AD-MSCs, but not in BM-MSCs. MSCs from both tissues showed a significant upregulation of key anti-inflammatory genes, increased secretion of IL-1 receptor antagonist (RA), and enhanced suppression of T-cell proliferation following the Cytomix treatment. Similarly, following a lipopolysaccharide challenge, the Cytomix-treated MSCs suppressed TNF-α secretion, while promoting the production of IL-10 and IL-1RA. These preconditioning approaches facilitate the production of MSCs with robust anti-inflammatory properties. AD-MSCs preconditioned with Cytomix under normoxia appear to be the most promising therapeutic candidates; however, safety concerns, such as thrombogenic disposition of cells due to TF expression, should be carefully considered prior to clinical translation.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Células da Medula Óssea/imunologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Células-Tronco Mesenquimais/imunologia , Tromboplastina/metabolismo , Células da Medula Óssea/citologia , Hipóxia Celular/imunologia , Proliferação de Células , Sobrevivência Celular/imunologia , Humanos , Mediadores da Inflamação/imunologia , Interleucina-10/metabolismo , Células-Tronco Mesenquimais/citologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Respir Res ; 19(1): 218, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413158

RESUMO

Multipotent mesenchymal stem/stromal cells (MSCs) possess robust self-renewal characteristics and the ability to differentiate into tissue-specific cells. Their therapeutic potential appears promising as evident from their efficacy in several animal models of pulmonary disorders as well as early-phase clinical trials of acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). Such therapeutic efficacy might be attributed to MSC-derived products (the "secretome"), namely conditioned media (CM) and extracellular vesicles (EVs), which have been shown to play pivotal roles in the regenerative function of MSCs. Importantly, the EVs secreted by MSCs can transfer a variety of bioactive factors to modulate the function of recipient cells via various mechanisms, including ligand-receptor interactions, direct membrane fusion, endocytosis, or phagocytosis.Herein, we review the current state-of-the-science of MSC-derived CM and EVs as potential therapeutic agents in lung diseases. We suggest that the MSC-derived secretome might be an appropriate therapeutic agent for treating aggressive pulmonary disorders because of biological and logistical advantages over live cell therapy. Nonetheless, further studies are warranted to elucidate the safety and efficacy of these components in combating pulmonary diseases.


Assuntos
Produtos Biológicos/administração & dosagem , Vesículas Extracelulares/transplante , Pneumopatias/terapia , Transplante de Células-Tronco Mesenquimais/tendências , Animais , Produtos Biológicos/isolamento & purificação , Meios de Cultivo Condicionados , Humanos , Pneumopatias/metabolismo , Células Estromais/fisiologia , Células Estromais/transplante
7.
Stem Cell Res Ther ; 9(1): 265, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305185

RESUMO

BACKGROUND: In the bone marrow, MSCs reside in a hypoxic milieu (1-5% O2) that is thought to preserve their multipotent state. Typically, in vitro expansion of MSCs is performed under normoxia (~ 21% O2), a process that has been shown to impair their function. Here, we evaluated the characteristics and function of MSCs cultured under hypoxia and hypothesized that, when compared to normoxia, dedicated hypoxia will augment the functional characteristics of MSCs. METHODS: Human and porcine bone marrow MSCs were obtained from fresh mononuclear cells. The first study evaluated MSC function following both long-term (10 days) and short-term (48 h) hypoxia (1% O2) culture. In our second study, we evaluated the functional characteristics of MSC cultured under short-term 2% and 5% hypoxia. MSCs were evaluated for their metabolic activity, proliferation, viability, clonogenicity, gene expression, and secretory capacity. RESULTS: In long-term culture, common MSC surface marker expression (CD44 and CD105) dropped under hypoxia. Additionally, in long-term culture, MSCs proliferated significantly slower and provided lower yields under hypoxia. Conversely, in short-term culture, MSCs proliferated significantly faster under hypoxia. In both long-term and short-term cultures, MSC metabolic activity was significantly higher under hypoxia. Furthermore, MSCs cultured under hypoxia had upregulated expression of VEGF with concomitant downregulation of HMGB1 and the apoptotic genes BCL-2 and CASP3. Finally, in both hypoxia cultures, the pro-inflammatory cytokine, IL-8, was suppressed, while levels of the anti-inflammatories, IL-1ra and GM-CSF, were elevated in short-term hypoxia only. CONCLUSIONS: In this study, we demonstrate that hypoxia augments the therapeutic characteristics of both porcine and human MSCs. Yet, short-term 2% hypoxia offers the greatest benefit overall, exemplified by the increase in proliferation, self-renewing capacity, and modulation of key genes and the inflammatory milieu as compared to normoxia. These data are important for generating robust MSCs with augmented function for clinical applications.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxigênio/farmacologia , Animais , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Suínos , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Stem Cell Res Ther ; 9(1): 251, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257702

RESUMO

BACKGROUND: It is known that, following a physiological insult, bone marrow-derived mesenchymal stem cells (MSCs) mobilize and home to the site of injury. However, the effect of injury on the function of endogenous MSCs is unknown. In this study, MSCs harvested from the bone marrow of swine with or without acute respiratory distress syndrome (ARDS) were assessed for their characteristics and therapeutic function. METHODS: MSCs were harvested from three groups of anesthetized and mechanically ventilated swine (n = 3 in each group): 1) no ARDS ('Uninjured' group); 2) ARDS induced via smoke inhalation and 40% burn and treated with inhaled epinephrine ('Injured Treated' group); and 3) ARDS without treatment ('Injured Untreated' group). Cellular evaluation of the three groups included: flow cytometry for MSC markers; colony forming unit-fibroblast (CFU-F) assay; proliferative and metabolic capacity; gene expression using quantitative real-time polymerase chain reaction (qRT-PCR); and a lipopolysaccharide (LPS) challenge, with or without coculture with mononuclear cells (MNCs), for evaluation of their protein secretion profile using Multiplex. Statistical analysis was performed using one- or two-way analysis of variance (ANOVA) with a Tukey's post-test; a p-value less than 0.05 was considered statistically significant. RESULTS: Cells from all groups exhibited nearly 100% expression of MSC surface markers and retained their multidifferentiation capacity. However, the MSCs from the 'Injured Untreated' group generated a significantly higher number of colonies compared with the other two groups (p < 0.0001), indicative of increased clonogenic capacity following ARDS. Following an LPS challenge, the MSCs from the 'Injured Untreated' group exhibited a significant reduction in their proliferative capacity (p = 0.0002), significant downregulation in the expression of high-mobility group box 1 (HMGB1; p < 0.001), Toll-like receptor (TLR)-4 (p < 0.01), and vascular endothelial growth factor (VEGF; p < 0.05) genes, and significantly diminished secretory capacity for the inflammatory mediators interleukin (IL)-6 (p < 0.0001), IL-8 (p < 0.05), and tumor necrosis factor (TNF)-α (p < 0.05) compared with the 'Uninjured' group. CONCLUSIONS: The results suggest that, following ARDS, there is an increase in the clonogenic capacity of MSCs to increase the available stem cell pool in vivo. However, MSCs harvested from subjects with ARDS seem to exhibit a diminished capacity to proliferate, express regenerative signals, and secrete pro/anti-inflammatory mediators.


Assuntos
Células da Medula Óssea/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/patologia , Síndrome do Desconforto Respiratório/patologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Técnicas de Cocultura , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGB1/genética , Lipopolissacarídeos/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Suínos , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
9.
J Trauma Acute Care Surg ; 84(1): 183-191, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29019797

RESUMO

This review describes the current state of the science on mesenchymal stem cell (MSC) treatment for acute lung injury (ALI). The general characteristics, regenerative potential, and mechanism of action of MSCs are first presented. Next, particular emphasis is placed on the application of MSCs for the treatment of acute respiratory distress syndrome (ARDS) in preclinical and clinical studies. Finally, we discuss current challenges and future directions in the field presented from a clinician-researcher perspective. The objective of this work is to provide the readership with a current review of the literature discussing the hurdles and overall promise of MSCs as therapeutic interventions for the treatment of ARDS.


Assuntos
Lesão Pulmonar Aguda/terapia , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/terapia , Humanos
10.
J Vis Exp ; (121)2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28362380

RESUMO

Mesenchymal stem/stromal cells (MSCs) hold great promise in bioengineering and regenerative medicine. MSCs can be isolated from multiple adult tissues via their strong adherence to tissue culture plastic and then further expanded in vitro, most commonly using fetal bovine serum (FBS). Since FBS can cause MSCs to become immunogenic, its presence in MSC cultures limits both clinical and experimental applications of the cells. Therefore, studies employing chemically defined xeno-free (XF) media for MSC cultures are extremely valuable. Many beneficial effects of MSCs have been attributed to their ability to regulate inflammation and immunity, mainly through secretion of immunomodulatory factors such as tumor necrosis factor-stimulated gene 6 (TSG6) and prostaglandin E2 (PGE2). However, MSCs require activation to produce these factors and since the effect of MSCs is often transient, great interest has emerged to discover ways of pre-activating the cells prior to their use, thus eliminating the lag time for activation in vivo. Here we present protocols to efficiently activate or prime MSCs in three-dimensional (3D) cultures under chemically defined XF conditions and to administer these pre-activated MSCs in vivo. Specifically, we first describe methods to generate spherical MSC micro-tissues or 'spheroids' in hanging drops using XF medium and demonstrate how the spheres and conditioned medium (CM) can be harvested for various applications. Second, we describe gene expression screens and in vitro functional assays to rapidly assess the level of MSC activation in spheroids, emphasizing the anti-inflammatory and anti-cancer potential of the cells. Third, we describe a novel method to inject intact MSC spheroids into the mouse peritoneal cavity for in vivo efficacy testing. Overall, the protocols herein overcome major challenges of obtaining pre-activated MSCs under chemically defined XF conditions and provide a flexible system to administer MSC spheroids for therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Cavidade Peritoneal/citologia , Esferoides Celulares/citologia , Animais , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Esferoides Celulares/metabolismo
11.
Transl Res ; 177: 127-142, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27469269

RESUMO

Stanniocalcin-1 (STC-1) is a multifunctional glycoprotein with antioxidant and anti-inflammatory properties. Ischemic myocardial necrosis generates "danger" signals that perpetuate detrimental inflammatory reactions often involving monocyte recruitment and their subsequent differentiation into proinflammatory macrophages. Therefore, we evaluated the effects of recombinant STC-1 (rSTC-1) on monocyte phenotype and in a mouse model of myocardial infarction. Using an established protocol to differentiate human monocytes into macrophages, we demonstrated that rSTC-1 did not alter morphology of the differentiated cells, toll-like receptor (TLR) 4 expression, or expression of the myeloid cell marker CD11b. However, rSTC-1 treatment before differentiation attenuated the rise in the expression of CD14, a TLR4 coreceptor and pathogen sensor that propagates innate immune responses, and suppressed levels of inflammatory cytokines produced by the differentiated cells in response to the CD14-TLR4 ligand lipopolysaccharide. Moreover, rSTC-1 treatment reduced CD14 expression in monocytes stimulated with endogenous danger signals. Interestingly, the effects of rSTC-1 on CD14 expression were not reproduced by a superoxide dismutase mimetic. In mice with induced myocardial infarcts, intravenous administration of rSTC-1 decreased CD14 expression in the heart as well as levels of tumor necrosis factor alpha, C-X-C motif ligand 2, interleukin 1 beta, and myeloperoxidase. It also suppressed the formation of scar tissue while enhancing cardiac function. The data suggests that one of the beneficial effects of STC-1 might be attributed to suppression of CD14 on recruited monocytes and macrophages that limits their inflammatory response. STC-1 may be a promising therapy to protect the heart and other tissues from ischemic injury.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Glicoproteínas/farmacologia , Glicoproteínas/uso terapêutico , Inflamação/patologia , Macrófagos/patologia , Monócitos/patologia , Isquemia Miocárdica/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cicatriz/patologia , Citocinas/metabolismo , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Injeções Intravenosas , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Células U937
12.
Stem Cell Res Ther ; 7: 27, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26864573

RESUMO

BACKGROUND: Mesenchymal stem/progenitor cells (MSC) have shown beneficial effects in many models of disease in part by modulating excessive inflammatory and immune responses. Frequently the beneficial effects of MSC persist long after their disappearance from host tissues, suggesting that MSC interact with intermediate cells in the host that relay or amplify their effects. The cells have usually been injected intravenously, but beneficial effects have also been reported with intraperitoneal (IP) injection of MSC. However the fate of IP injection of MSC has not been examined. METHODS: The fate of the human MSC injected IP into immune-competent mice was studied. In vivo imaging was used to track green fluorescent protein-labeled MSC in the peritoneal cavity. In addition, their retention in peritoneal tissues was measured by real-time polymerase chain reaction for human GAPDH mRNA. To describe the effects of human MSC on the immune system of the peritoneum, the peritoneal lavage, omentum, lymph nodes and mesenteric tissues were collected. Flow cytometry was used to evaluate the immune cell populations, while cytokine/chemokine production was measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Challenge with lipopolysaccharide at 3 days after the administration of MSC was used to evaluate the preconditioning of the immune system. RESULTS: Within 20 min, single MSC were no longer detected in peritoneal lavage fluid. Instead they were recovered as aggregates of varying size that contained mouse macrophages and a few B220+ lymphocytes. After 1 day, most of the aggregates containing live MSC were attached to sites throughout the peritoneal cavity including the omentum and mesentery. Less than 0.05 % of the live injected cells were detected in the spleen and jejunal lymph nodes. In all locations, MSC colocalized with mouse macrophages and B220+ lymphocytes. Attachment to the omentum and mesentery was accompanied by the recruitment of immune cells and changes in the production of a series of mouse cytokines. A similar increase in mouse cytokines in the peritoneum was seen after IP injections of human fibroblasts. CONCLUSIONS: IP injected human MSC rapidly formed aggregates with mouse macrophages and B220+ lymphocytes and attached to the walls of the peritoneal cavity. The formation of the aggregates probably limits access of the cells to the systemic circulation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Animais , Adesão Celular , Agregação Celular , Citocinas/biossíntese , Citocinas/metabolismo , Humanos , Infusões Parenterais , Antígenos Comuns de Leucócito/metabolismo , Lipopolissacarídeos/farmacologia , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peritônio/citologia , Peritônio/imunologia
13.
Proc Natl Acad Sci U S A ; 107(31): 13724-9, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643923

RESUMO

Previous reports suggested that culture as 3D aggregates or as spheroids can increase the therapeutic potential of the adult stem/progenitor cells referred to as mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). Here we used a hanging drop protocol to prepare human MSCs (hMSCs) as spheroids that maximally expressed TNFalpha stimulated gene/protein 6 (TSG-6), the antiinflammatory protein that was expressed at high levels by hMSCs trapped in the lung after i.v. infusion and that largely explained the beneficial effects of hMSCs in mice with myocardial infarcts. The properties of spheroid hMSCs were found to depend critically on the culture conditions. Under optimal conditions for expression of TSG-6, the hMSCs also expressed high levels of stanniocalcin-1, a protein with both antiinflammatory and antiapoptotic properties. In addition, they expressed high levels of three anticancer proteins: IL-24, TNFalpha-related apoptosis inducing ligand, and CD82. The spheroid hMSCs were more effective than hMSCs from adherent monolayer cultures in suppressing inflammatory responses in a coculture system with LPS-activated macrophages and in a mouse model for peritonitis. In addition, the spheroid hMSCs were about one-fourth the volume of hMSCs from adherent cultures. Apparently as a result, larger numbers of the cells trafficked through the lung after i.v. infusion and were recovered in spleen, liver, kidney, and heart. The data suggest that spheroid hMSCs may be more effective than hMSCs from adherent cultures in therapies for diseases characterized by sterile tissue injury and unresolved inflammation and for some cancers that are sensitive to antiinflammatory agents.


Assuntos
Células-Tronco Mesenquimais/citologia , Animais , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Agregação Celular , Sobrevivência Celular , Células Cultivadas , Glicoproteínas/metabolismo , Humanos , Proteína Kangai-1/imunologia , Ligantes , Macrófagos/imunologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...