Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38601750

RESUMO

This work aimed to purify the proteins that cause blood coagulation in the venom of the Iranian Echis carinatus snake species in a comprehensive manner. Gel filtration chromatography (GFC), Ion exchange chromatography (IEC), and Size Exclusion High-Performance Liquid Chromatography (SEC-HPLC) were utilized in the purification of the coagulation factors. The prothrombin clotting time (PRCT) and SDS-PAGE electrophoresis were performed to confirm the coagulative fractions. The fraction with the shortest coagulation time was selected. The components of this designated fraction were identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF) following thorough purification. Circular dichroism (CD) was employed to determine the second structure of the coagulation factor. The crude venom (CV) was analyzed and had a total protein concentration of 97%. Furthermore, the PRCT of the crude venom solution at a concentration of 1 mg/ml was determined to be 24.19 ± 1.05 s. The dosage administered was found to be a factor in the venom's capacity to induce hemolysis. According to CD analysis, the protein under investigation had a helical structure of 16.7%, a beta structure of 41%, and a turn structure of 9.8%. CHNS proved that the purified coagulant protein had a Carbon content of 77.82%, 5.66% Hydrogen, 3.19% Nitrogen, and 0.49% Sulphur. In the present investigation, a particular type of snake venom metalloproteinase (SVMP) has undergone the process of purification and characterization and has been designated as EC-124. This purified fraction shows significant efficacy as a procoagulant. Our findings have shown that this compound has a function similar to factor X and most likely it can cause blood coagulation by activating factor II (FII).

2.
Nanomedicine ; 6(1): 58-63, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19447202

RESUMO

In the past decade, many strategies have been developed to enhance oral protein delivery. The aim of the current work was to develop a nanoparticulate system based on ionic gelation between chitosan and Arabic gum for loading of insulin. Various formulations were prepared using 2(3) factorial designs. The optimum association efficiency was obtained for formulations F2, F5, and F8. The release profile of insulin in phosphate buffer solutions (pH 6.5 and pH 7.2) is completely different than that in acidic medium (pH 1.2). Increased solubility of chitosan in acidic medium and better swelling of Arabic gum chains at pH >6.5 resulted in lower insulin release of nanoparticles at pH 6.5 in comparison with that of the other pH mediums. The values of the exponent n were 0.49 and 0.82 for formulations F8 and F5, respectively, indicating a non-Fickian transport. This suggests that release is possibly controlled by diffusion or relaxation of the polymer chains. FROM THE CLINICAL EDITOR: This paper summarizes the development of a nanoparticulate system based on ionic gelation between chitosan and gum Arabic for oral delivery of insulin. If preclinical studies in animal models will indicate reliable and quantifiable delivery of insulin, this method may pave the way to a novel and less invasive way of administering insulin to diabetes patients.


Assuntos
Quitosana/química , Goma Arábica/química , Insulina/farmacologia , Nanopartículas/química , Nanotecnologia/métodos , Difusão , Géis , Humanos , Concentração de Íons de Hidrogênio , Íons , Cinética , Modelos Lineares , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...