Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(10): 8334-8343, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391378

RESUMO

The importance of controlled hydrocarbon oxidation has sparked interest in methods that catalyze this process. In this vein, controlled oxidative degradation of BTEX compounds (benzene, toluene, ethylbenzene and xylenes) which are hazardous air and industrial waste water contaminants is very considerable. Accordingly, the reactive VO2+ species was anchored onto silica nanoparticles (VO-SNP) to catalyze the conversion of BTEX into useful compounds. The synthesized heterogeneous VO-SNP catalyst was characterized using different techniques such as FTIR, FETEM, FESEM, XRD, EDX, ICP and XPS. Interestingly, the catalyst performed the activation of the relatively inert C-H bonds of BTEX to produce oxygenated compounds under quite mild and eco-friendly conditions at room temperature with no extra additives. Furthermore, we introduced VO2+ species onto mineral kaolin sheets (VO-kaolin) as a vanadyl decorated natural solid support and the results showed less efficiency compared to VO-SNP.

2.
Phys Chem Chem Phys ; 25(39): 26588-26603, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37753780

RESUMO

A magnetically recoverable catalyst of an iron(III) bis(phenol) diamine complex immobilized onto amine functionalized silica-coated magnetic nanoparticles has been synthesized. The catalyst was characterized using FESEM, TEM and XRD which confirmed the nano structure of the catalyst. The physicochemical techniques of ICP, FT-IR, XPS, EDS and TGA proved the loading of the ligand and metal complex on silica-coated magnetic nanoparticles. Using the prepared heterogeneous catalyst, aerobic epoxidation reactions of different alkenes have been investigated in the presence of SO32- as a reducing agent. Moreover, using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to discover the mechanism of the aerobic epoxidation of olefins, a new TEMPO-assisted route has been explored. Both of the reaction pathways led to a moderate to high percentage yield of epoxides in water at room temperature. For further understanding mechanistic aspects, density functional theory (DFT) computational studies have been performed. The DFT calculations confirm the suggested mechanism for the title reaction and show the electron density in the vicinity of Fe(II) in the presence of TEMPO as a co-catalyst was more than that in the presence of SO32-.

3.
RSC Adv ; 10(40): 23543-23553, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517365

RESUMO

Direct C-H bond oxidation of organic materials, and producing the necessary oxygenated compounds under mild conditions, has attracted increasing interest. The selective oxidation of various alkylbenzenes was carried out by means of a new catalyst containing VO2+ species supported on silica-coated Fe3O4 nanoparticles using t-butyl hydroperoxide as an oxidant at room temperature in H2O or solvent-free media. The chemical and structural characterization of the catalyst using several methods such as FTIR spectroscopy, XRD, FETEM, FESEM, SAED, EDX and XPS showed that VO2+ is covalently bonded to the silica surface. High selectivity and excellent conversion of various toluene derivatives, with less reactive aliphatic (sp3) C-H bonds, to related benzoic acids were quite noticeable. The aerobic oxygenation reaction of these alkylbenzenes was studied under the same conditions. All the results accompanied by sustainability of the inexpensive and simple magnetically separable heterogeneous catalyst proved the important criteria for commercial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...