Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896301

RESUMO

Polymer composites are a class of material that are gaining a lot of attention in demanding tribological applications due to the ability of manipulating their performance by changing various factors, such as processing parameters, types of fillers, and operational parameters. Hence, a number of samples under different conditions need to be repeatedly produced and tested in order to satisfy the requirements of an application. However, with the advent of a new field of triboinformatics, which is a scientific discipline involving computer technology to collect, store, analyze, and evaluate tribological properties, we presently have access to a variety of high-end tools, such as various machine learning (ML) techniques, which can significantly aid in efficiently gauging the polymer's characteristics without the need to invest time and money in a physical experimentation. The development of an accurate model specifically for predicting the properties of the composite would not only cheapen the process of product testing, but also bolster the production rates of a very strong polymer combination. Hence, in the current study, the performance of five different machine learning (ML) techniques is evaluated for accurately predicting the tribological properties of ultrahigh molecular-weight polyethylene (UHMWPE) polymer composites reinforced with silicon carbide (SiC) nanoparticles. Three input parameters, namely, the applied pressure, holding time, and the concentration of SiCs, are considered with the specific wear rate (SWR) and coefficient of friction (COF) as the two output parameters. The five techniques used are support vector machines (SVMs), decision trees (DTs), random forests (RFs), k-nearest neighbors (KNNs), and artificial neural networks (ANNs). Three evaluation statistical metrics, namely, the coefficient of determination (R2-value), mean absolute error (MAE), and root mean square error (RMSE), are used to evaluate and compare the performances of the different ML techniques. Based upon the experimental dataset, the SVM technique was observed to yield the lowest error rates-with the RMSE being 2.09 × 10-4 and MAE being 2 × 10-4 for COF and for SWR, an RMSE of 2 × 10-4 and MAE of 1.6 × 10-4 were obtained-and highest R2-values of 0.9999 for COF and 0.9998 for SWR. The observed performance metrics shows the SVM as the most reliable technique in predicting the tribological properties-with an accuracy of 99.99% for COF and 99.98% for SWR-of the polymer composites.

2.
Materials (Basel) ; 15(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160808

RESUMO

Due to rapid technological advancements, the demand for lightweight materials with improved tribo-mechanical properties is continuously growing. The development of composite materials is one of the routes taken by researchers to meet these target properties. Aluminum (Al) is one of the most suitable materials used for developing composites for a wide range of applications because of its light weight, high conductivity, and high specific strength. In this study, aluminum hybrid nanocomposites with alumina (10 Vol% Al2O3) and varying loadings of graphene oxide (0.25, 0.5 and 1 wt% GO) were fabricated using the spark plasma sintering technique. The tribological properties of the developed hybrid composites were evaluated by conducting ball-on-disk wear tests at a normal load of 3N, with a sliding speed of 0.1 m/s, and for a sliding distance of 100 m. A 440C hardened stainless steel ball with a diameter of 6.3 mm and a hardness of 62 RC was used as a counterface. Scanning electron microscopy (SEM), elemental X-ray dispersive analysis (EDS), and optical profilometry were used to ascertain the involved wear mechanisms. The results revealed that Al-10 Vol%Vol% Al2O3-0.25 wt% GO hybrid nanocomposite showed an increase of 48% in the hardness, a reduction of 55% in the specific wear rate, and a reduction of 5% in COF compared with pure aluminum.

3.
Nanomaterials (Basel) ; 11(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066505

RESUMO

Aluminum matrix composites are among the most widely used metal matrix composites in several industries, such as aircraft, electronics, automobile, and aerospace, due to their high specific strength, durability, structural rigidity and high corrosion resistance. However, owing to their low hardness and wear resistance, their usage is limited in demanding applications, especially in harsh environments. In the present work, aluminum hybrid nanocomposite reinforced with alumina (Al2O3) and graphene oxide (GO) possessing enhanced mechanical and thermal properties was developed using spark plasma sintering (SPS) technique. The focus of the study was to optimize the concentration of Al2O3 and GO content in the composite to improve the mechanical and thermal properties such as hardness, compressive strength, heat flow, and thermal expansion. The nanocomposites were characterized by FESEM, EDS, XRD and Raman spectroscopy to investigate their morphology and structural properties. In the first phase, different volume percent of alumina (10%, 20%, 30%) were used as reinforcement in the aluminum matrix to obtain (Al+X% Al2O3) composite with the best mechanical/thermal properties which was found to be 10 V% of Al2O3. In the second phase, a hybrid nanocomposite was developed by reinforcing the (Al + 10 V% Al2O3) with different weight percent (0.25%, 0.5%, 1%) of GO to obtain the optimum composition with improved mechanical/thermal properties. Results revealed that the Al\10 V% Al2O3\0.25 wt.% GO hybrid nanocomposite showed the highest improvement of about 13% in hardness and 34% in compressive strength as compared to the Al\10V% Al2O3 composite. Moreover, the hybrid nanocomposite Al\10 V% Al2O3\0.25 wt.% GO also displayed the lowest thermal expansion.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217915

RESUMO

Transparent and amorphous yttrium (Y)/Sialon thin films were successfully fabricated using pulsed laser deposition (PLD). The thin films were fabricated in three steps. First, Y/Sialon target was synthesized using spark plasma sintering technique at 1500 °C in an inert atmosphere. Second, the surface of the fabricated target was cleaned by grinding and polishing to remove any contamination, such as graphite and characterized. Finally, thin films were grown using PLD in an inert atmosphere at various substrate temperatures (RT to 500 °C). While the X-ray diffractometer (XRD) analysis revealed that the Y/Sialon target has ß phase, the XRD of the fabricated films showed no diffraction peaks and thus confirming the amorphous nature of fabricated thin films. XRD analysis displayed that the fabricated thin films were amorphous while the transparency, measured by UV-vis spectroscopy, of the films, decreased with increasing substrate temperature, which was attributed to a change in film thickness with deposition temperature. X-ray photoelectron spectroscopy (XPS) results suggested that the synthesized Y/Sialon thin films are nearly homogenous and contained all target's elements. A scratch test revealed that both 300 and 500 °C coatings possess the tough and robust nature of the film, which can resist much harsh loads and shocks. These results pave the way to fabricate different Sialon doped materials for numerous applications.

5.
Materials (Basel) ; 12(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703319

RESUMO

A new approach of using a polymer hybrid nanocomposite coating to modify the surface of titanium and its alloys is explored in this study. Electrostatic spray coating process is used to deposit the coating on the plasma-treated substrates for better adhesion. Ultra-high molecular weight polyethylene (UHMWPE) has been selected as the parent matrix for the coating due to its biocompatibility and excellent tribological properties. However, to improve its load-bearing capacity carbon nanotubes (CNT's) (0.5, 1.5, and 3 wt.%) are used as reinforcement and to further enhance its performance, different weight percent of hydroxyapatite (HA) (0.5, 1.5, 3, and 5 wt.%) are introduced to form a hybrid nanocomposite coating. The dispersion of CNT's and HA was evaluated by Raman spectroscopy and scanning electron microscopy. The electrochemical corrosion behavior of the nanocomposite coatings was evaluated by performing potentiodynamic polarization and electrochemical impedance spectroscopic tests in simulated body fluid. Tribological performance of the developed hybrid nanocomposite coating was evaluated using a 6.3 mm diameter stainless steel (440C) ball as the counterface in a ball-on-disk configuration. Tests were carried out at different normal loads (7 N, 9 N, 12 N, and 15 N) and a constant sliding velocity of 0.1 m/s. The developed hybrid nanocomposite coating showed excellent mechanical properties in terms of high hardness, improved scratch resistance, and excellent wear and corrosion resistance compared to the pristine UHMWPE coatings.

6.
Materials (Basel) ; 12(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096624

RESUMO

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.

7.
Materials (Basel) ; 12(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897692

RESUMO

The present study investigates the high temperature tribological performance of spark plasma sintered, nano- and micron-sized tungsten carbide (WC) bonded by 9 wt.% cobalt (Co). The composites were fabricated using a two-step procedure of mixing followed by spark plasma sintering (SPS). Ball-on-disc wear tests were conducted at a normal load of 30 N, linear speed of 0.1 m/s under dry conditions and at three different temperatures (room temperature, 300 °C and 600 °C). Field emission scanning electron microscopy (FESEM), optical profilometry and energy dispersive X-ray (EDS) spectroscopy were used to analyze the surface morphology and the wear track area. At room temperature, it was observed that the nano-sized WC composites exhibited better wear resistance than the micron-sized WC composites. The wear resistance of the nano-sized samples declined significantly relative to that of the micron-sized samples with an increase in temperature. This decline in performance was attributed to the higher surface area of nano-sized WC particles, which underwent rapid oxidation at elevated temperatures, resulting in poor wear resistance. The wear rate observed at 600 °C for the micron-sized WC composites was 75% lower than that of the nano-sized cemented carbide. Oxidative wear was observed to be the predominant wear mechanism for both cemented carbide samples at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...