Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7617, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993425

RESUMO

Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.


Assuntos
Linfócitos Intraepiteliais , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Domínio B30.2-SPRY , Ativação Linfocitária , Domínios Proteicos , Butirofilinas/genética , Antígenos CD/metabolismo
2.
Front Immunol ; 14: 1148890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122739

RESUMO

T cell receptor (TCR) gene modified T cells are a promising form of adoptive cellular therapy against human malignancies and viral infections. Since the first human clinical trial was carried out in 2006, several strategies have been developed to improve the efficacy and safety of TCR engineered T cells by enhancing the surface expression of the introduced therapeutic TCRs whilst reducing the mis-pairing with endogenous TCR chains. In this study, we explored how modifications of framework residues in the TCR variable domains affect TCR expression and function. We used bioinformatic and protein structural analyses to identify candidate amino acid residues in the framework of the variable ß domain predicted to drive high TCR surface expression. Changes of these residues in poorly expressed TCRs resulted in improved surface expression and boosted target cell specific killing by engineered T cells expressing the modified TCRs. Overall, these results indicate that small changes in the framework of the TCR variable domains can result in improved expression and functionality, while at the same time reducing the risk of toxicity associated with TCR mis-pairing.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Antígenos/metabolismo , Genes Codificadores dos Receptores de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Regiões Determinantes de Complementaridade
3.
Cell Rep ; 42(3): 112207, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36867531

RESUMO

The immune microenvironment in breast cancer (BCa) is controlled by a complex network of communication between various cell types. Here, we find that recruitment of B lymphocytes to BCa tissues is controlled via mechanisms associated with cancer cell-derived extracellular vesicles (CCD-EVs). Gene expression profiling identifies the Liver X receptor (LXR)-dependent transcriptional network as a key pathway that controls both CCD-EVs-induced migration of B cells and accumulation of B cells in BCa tissues. The increased accumulation oxysterol ligands for LXR (i.e., 25-hydroxycholesterol and 27-hydroxycholesterol) in CCD-EVs is regulated by the tetraspanin 6 (Tspan6). Tspan6 stimulates the chemoattractive potential of BCa cells for B cells in an EV- and LXR-dependent manner. These results demonstrate that tetraspanins control intercellular trafficking of oxysterols via CCD-EVs. Furthermore, tetraspanin-dependent changes in the oxysterol composition of CCD-EVs and the LXR signaling axis play a key role in specific changes in the tumor immune microenvironment.


Assuntos
Neoplasias da Mama , Oxisteróis , Humanos , Feminino , Receptores X do Fígado/metabolismo , Neoplasias da Mama/genética , Oxisteróis/farmacologia , Tetraspaninas , Linfócitos B/metabolismo , Microambiente Tumoral
4.
Cell Rep ; 42(4): 112321, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36995939

RESUMO

Vγ9Vδ2 T cells play critical roles in microbial immunity by detecting target cells exposed to pathogen-derived phosphoantigens (P-Ags). Target cell expression of BTN3A1, the "P-Ag sensor," and BTN2A1, a direct ligand for T cell receptor (TCR) Vγ9, is essential for this process; however, the molecular mechanisms involved are unclear. Here, we characterize BTN2A1 interactions with Vγ9Vδ2 TCR and BTN3A1. Nuclear magnetic resonance (NMR), modeling, and mutagenesis establish a BTN2A1-immunoglobulin V (IgV)/BTN3A1-IgV structural model compatible with their cell-surface association in cis. However, TCR and BTN3A1-IgV binding to BTN2A1-IgV is mutually exclusive, owing to binding site proximity and overlap. Moreover, mutagenesis indicates that the BTN2A1-IgV/BTN3A1-IgV interaction is non-essential for recognition but instead identifies a molecular surface on BTN3A1-IgV essential to P-Ag sensing. These results establish a critical role for BTN3A-IgV in P-Ag sensing, in mediating direct or indirect interactions with the γδ-TCR. They support a composite-ligand model whereby intracellular P-Ag detection coordinates weak extracellular germline TCR/BTN2A1 and clonotypically influenced TCR/BTN3A-mediated interactions to initiate Vγ9Vδ2 TCR triggering.


Assuntos
Ativação Linfocitária , Linfócitos T , Ligantes , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Células Germinativas/metabolismo
5.
Res Sq ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824912

RESUMO

Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the V-domain of BTN3A2/BTN3A3. Moreover, PAg/B30.2 interaction, and the critical γδ-T-cell-activating V-domain, localize to different molecules. Secondly, this distinct topology as well as intracellular trafficking and conformation of BTN3A heteromers or ancestral-like BTN3A homomers are controlled by molecular interactions of the BTN3 juxtamembrane region. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and division of labor in BTN proteins deepens understanding of PAg sensing and elucidates a mode of action potentially applicable to other BTN/BTNL family members.

6.
Cell Rep ; 39(11): 110959, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705051

RESUMO

MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.


Assuntos
Antígenos de Histocompatibilidade Classe I , Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , Antígenos HLA-E
7.
Cell Rep ; 39(8): 110858, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613583

RESUMO

γδ T cells are generally considered innate-like lymphocytes, however, an "adaptive-like" γδ compartment has now emerged. To understand transcriptional regulation of adaptive γδ T cell immunobiology, we combined single-cell transcriptomics, T cell receptor (TCR)-clonotype assignment, ATAC-seq, and immunophenotyping. We show that adult Vδ1+ T cells segregate into TCF7+LEF1+Granzyme Bneg (Tnaive) or T-bet+Eomes+BLIMP-1+Granzyme B+ (Teffector) transcriptional subtypes, with clonotypically expanded TCRs detected exclusively in Teffector cells. Transcriptional reprogramming mirrors changes within CD8+ αß T cells following antigen-specific maturation and involves chromatin remodeling, enhancing cytokine production and cytotoxicity. Consistent with this, in vitro TCR engagement induces comparable BLIMP-1, Eomes, and T-bet expression in naive Vδ1+ and CD8+ T cells. Finally, both human cytomegalovirus and Plasmodium falciparum infection in vivo drive adaptive Vδ1 T cell differentiation from Tnaive to Teffector transcriptional status, alongside clonotypic expansion. Contrastingly, semi-invariant Vγ9+Vδ2+ T cells exhibit a distinct "innate-effector" transcriptional program established by early childhood. In summary, adaptive-like γδ subsets undergo a pathogen-driven differentiation process analogous to conventional CD8+ T cells.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Adulto , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Pré-Escolar , Granzimas/metabolismo , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/metabolismo
8.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008956

RESUMO

Plakin repeat domains (PRDs) are globular modules that mediate the interaction of plakin proteins with the intermediate filament (IF) cytoskeleton. These associations are vital for maintaining tissue integrity in cardiac muscle and epithelial tissues. PRDs are subject to mutations that give rise to cardiomyopathies such as arrhythmogenic right ventricular cardiomyopathy, characterised by ventricular arrhythmias and associated with an increased risk of sudden heart failure, and skin blistering diseases. Herein, we have examined the functional and structural effects of 12 disease-linked missense mutations, identified from the human gene mutation database, on the PRDs of the desmosomal protein desmoplakin. Five mutations (G2056R and E2193K in PRD-A, G2338R and G2375R in PRD-B and G2647D in PRD-C) rendered their respective PRD proteins either fully or partially insoluble following expression in bacterial cells. Each of the residues affected are conserved across plakin family members, inferring a crucial role in maintaining the structural integrity of the PRD. In transfected HeLa cells, the mutation G2375R adversely affected the targeting of a desmoplakin C-terminal construct containing all three PRDs to vimentin IFs. The deletion of PRD-B and PRD-C from the construct compromised its targeting to vimentin. Bioinformatic and structural modelling approaches provided multiple mechanisms by which the disease-causing mutations could potentially destabilise PRD structure and compromise cytoskeletal linkages. Overall, our data highlight potential molecular mechanisms underlying pathogenic missense mutations and could pave the way for informing novel curative interventions targeting cardiomyopathies and skin blistering disorders.


Assuntos
Desmoplaquinas/química , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Alelos , Substituição de Aminoácidos , Imunofluorescência , Estudos de Associação Genética , Predisposição Genética para Doença , Células HeLa , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Fenótipo , Proteínas Recombinantes , Solubilidade , Relação Estrutura-Atividade
9.
J Surg Case Rep ; 2021(11): rjaa541, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804473

RESUMO

Multicavitary abscesses are uncommon in immunocompetent individuals. Splenic abscesses being relatively uncommon with an incidence of 0.1-0.7% in quoted series [ 1]. Commonly reported cases are secondary infective endocarditis. To have both a splenic abscess and empyema concurrently is rare. We describe a case of a patient with a large left-sided empyema thoracis and concurrent splenic abscess.

10.
Sci Immunol ; 6(61)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330813

RESUMO

Human γδ T cells contribute to tissue homeostasis and participate in epithelial stress surveillance through mechanisms that are not well understood. Here, we identified ephrin type-A receptor 2 (EphA2) as a stress antigen recognized by a human Vγ9Vδ1 TCR. EphA2 is recognized coordinately by ephrin A to enable γδ TCR activation. We identified a putative TCR binding site on the ligand-binding domain of EphA2 that was distinct from the ephrin A binding site. Expression of EphA2 was up-regulated upon AMP-activated protein kinase (AMPK)-dependent metabolic reprogramming of cancer cells, and coexpression of EphA2 and active AMPK in tumors was associated with higher CD3 T cell infiltration in human colorectal cancer tissue. These results highlight the potential of the human γδ TCR to cooperate with a co-receptor to recognize non-MHC-encoded proteins as signals of cellular dysregulation, potentially allowing γδ T cells to sense metabolic energy changes associated with either viral infection or cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Antígenos/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias/imunologia , Receptor EphA2/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Humanos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética
11.
J Struct Biol ; 213(3): 107749, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033898

RESUMO

In this graphical review we focus on the structural characteristics of desmosomal proteins, their interactions with each other and with the intermediate filament cytoskeleton. The wealth of structural information that is now available allows predictions to be made about the pathogenic effect of disease-causing mutations. We have selected representative examples of missense mutations that are buried, semi-buried or surface exposed, and demonstrate how such variants could affect the structural fold of desmosomal proteins that are expressed in the heart. We explain how such alterations could compromise desmosomal adhesion, resulting in life threatening diseases including arrhythmogenic right ventricular cardiomyopathy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Humanos , Mutação/genética , Placofilinas
12.
Immunol Rev ; 298(1): 25-46, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33084045

RESUMO

Distinct innate-like and adaptive-like immunobiological paradigms are emerging for human γδ T cells, supported by a combination of immunophenotypic, T cell receptor (TCR) repertoire, functional, and transcriptomic data. Evidence of the γδ TCR/ligand recognition modalities that respective human subsets utilize is accumulating. Although many questions remain unanswered, one superantigen-like modality features interactions of germline-encoded regions of particular TCR Vγ regions with specific BTN/BTNL family members and apparently aligns with an innate-like biology, albeit with some scope for clonal amplification. A second involves CDR3-mediated γδ TCR interaction with diverse ligands and aligns with an adaptive-like biology. Importantly, these unconventional modalities provide γδ T cells with unique recognition capabilities relative to αß T cells, B cells, and NK cells, allowing immunosurveillance for signatures of "altered self" on target cells, via a membrane-linked γδ TCR recognizing intact non-MHC proteins on the opposing cell surface. In doing so, they permit cellular responses in diverse situations including where MHC expression is compromised, or where conventional adaptive and/or NK cell-mediated immunity is suppressed. γδ T cells may therefore utilize their TCR like a cell-surface Fab repertoire, somewhat analogous to engineered chimeric antigen receptor T cells, but additionally integrating TCR signaling with parallel signals from other surface immunoreceptors, making them multimolecular sensors of cellular stress.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Humanos , Ligantes , Monitorização Imunológica , Subpopulações de Linfócitos T
13.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118801, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712070

RESUMO

The plakin family of cytolinkers interacts with intermediate filaments (IFs) through plakin repeat domain (PRD) and linker modules. Recent structure/function studies have established the molecular basis of envoplakin-PRD and periplakin-linker interactions with vimentin. Both plakin modules share a broad basic groove which recognizes acidic rod elements on IFs, a mechanism that is applicable to other plakin family members. This review postulates a universal IF engagement mechanism that illuminates the specific effects of pathogenic mutations associated with diseases including arrhythmogenic right ventricular cardiomyopathy, and reveals how diverse plakin proteins offer tailored IF tethering to ensure stable, dynamic and regulated cellular structures.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Filamentos Intermediários/genética , Plaquinas/genética , Sequência de Aminoácidos/genética , Displasia Arritmogênica Ventricular Direita/patologia , Humanos , Mutação/genética , Plaquinas/classificação , Ligação Proteica/genética , Domínios Proteicos/genética , Vimentina/genética
14.
Trends Biochem Sci ; 45(7): 551-553, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32299647

RESUMO

Nonclassical class I MHC-like molecules are ligands for several unconventional T cell populations. Recently, Le Nours et al. identified human γδ T cells recognising MHC-related protein-1 (MR1) via their T cell receptor (TCR). Also recognised by the αß-TCR of mucosal associated invariant T cells, MR1 interacts with specific γδ-TCRs using strikingly diverse binding modes, suggesting fundamental differences in γδ T cell recognition.


Assuntos
Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Ligantes , Antígenos de Histocompatibilidade Menor , Linfócitos T/imunologia
15.
Immunity ; 52(3): 487-498.e6, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32155411

RESUMO

Vγ9Vδ2 T cells respond in a TCR-dependent fashion to both microbial and host-derived pyrophosphate compounds (phosphoantigens, or P-Ag). Butyrophilin-3A1 (BTN3A1), a protein structurally related to the B7 family of costimulatory molecules, is necessary but insufficient for this process. We performed radiation hybrid screens to uncover direct TCR ligands and cofactors that potentiate BTN3A1's P-Ag sensing function. These experiments identified butyrophilin-2A1 (BTN2A1) as essential to Vγ9Vδ2 T cell recognition. BTN2A1 synergised with BTN3A1 in sensitizing P-Ag-exposed cells for Vγ9Vδ2 TCR-mediated responses. Surface plasmon resonance experiments established Vγ9Vδ2 TCRs used germline-encoded Vγ9 regions to directly bind the BTN2A1 CFG-IgV domain surface. Notably, somatically recombined CDR3 loops implicated in P-Ag recognition were uninvolved. Immunoprecipitations demonstrated close cell-surface BTN2A1-BTN3A1 association independent of P-Ag stimulation. Thus, BTN2A1 is a BTN3A1-linked co-factor critical to Vγ9Vδ2 TCR recognition. Furthermore, these results suggest a composite-ligand model of P-Ag sensing wherein the Vγ9Vδ2 TCR directly interacts with both BTN2A1 and an additional ligand recognized in a CDR3-dependent manner.


Assuntos
Antígenos/imunologia , Butirofilinas/imunologia , Células Germinativas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Antígenos CD/química , Antígenos CD/imunologia , Antígenos CD/metabolismo , Butirofilinas/química , Butirofilinas/metabolismo , Células CHO , Cricetinae , Cricetulus , Células Germinativas/metabolismo , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo
16.
Commun Biol ; 3(1): 83, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081916

RESUMO

Plakin proteins form connections that link the cell membrane to the intermediate filament cytoskeleton. Their interactions are mediated by a highly conserved linker domain through an unresolved mechanism. Here analysis of the human periplakin linker domain structure reveals a bi-lobed module transected by an electropositive groove. Key basic residues within the periplakin groove are vital for co-localization with vimentin in human cells and compromise direct binding which also requires acidic residues D176 and E187 in vimentin. We propose a model whereby basic periplakin linker domain residues recognize acidic vimentin side chains and form a complementary binding groove. The model is shared amongst diverse linker domains and can be used to investigate the effects of pathogenic mutations in the desmoplakin linker associated with arrhythmogenic right ventricular cardiomyopathy. Linker modules either act solely or collaborate with adjacent plakin repeat domains to create strong and adaptable tethering within epithelia and cardiac muscle.


Assuntos
Plaquinas/química , Plaquinas/metabolismo , Vimentina/química , Vimentina/metabolismo , Sequência de Aminoácidos , Aminoácidos Acídicos/química , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Células HeLa , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Plaquinas/genética , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Quaternária de Proteína , Vimentina/genética
17.
Immunol Lett ; 217: 15-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689443

RESUMO

The aetiology of multiple sclerosis (MS) is as yet poorly understood. Multiple mechanisms in different disease stages are responsible for immunopathology in MS. HLA Class II DR2b (DRB1*1501 ß, DRA1*0101 α) is the strongest genetic risk factor for MS. Remnants of ancient retroviruses in the human genome, termed human endogenous retroviruses (HERV), and Epstein-Barr virus (EBV) infection are also associated with MS. In silico analyses of human endogenous retroviral envelope (HERV env) proteins and three myelin proteins that are principal targets of an autoimmune response in MS showed sequence similarities between potential TH epitopes within pairs of viral and myelin peptides predicted to bind HLA DR2b. This led to the proposal that such molecular mimicry may potentially trigger MS. HLA DR2b binding characteristics of previously identified peptides from the three myelin proteins and HERV env proteins as well as additional in silico predicted peptides from other encephalitogenic brain proteins and EBV proteins were studied to further investigate molecular mimicry. Peptides containing potential TH epitopes from the myelin oligodendrocyte glycoprotein and HERV env previously predicted to bind HLA DR2b as well as other pertinent potential HLA DR2b-restricted TH epitopes were confirmed to bind HLA DR2b molecules. Molecular modelling of HLA DR2b in complex with high affinity peptides derived from MOG and HERV env proteins showed that their binding could occur in a similar manner to a HLA DR2b-binding peptide containing a known TH epitope. A structurally related pair of peptides predicted to bind HLA DR2b from the EBV protein EBNA1 and ß synuclein, a brain protein implicated in MS, were also shown to similarly bind HLA DR2b. The findings justify investigating CD4+ T cell responses to the identified peptides.


Assuntos
Retrovirus Endógenos/química , Produtos do Gene env/química , Cadeias beta de HLA-DR/química , Herpesvirus Humano 4/química , Esclerose Múltipla/genética , Proteína Básica da Mielina/química , Glicoproteína Mielina-Oligodendrócito/química , beta-Sinucleína/química , Sequência de Aminoácidos/genética , Retrovirus Endógenos/genética , Epitopos/química , Produtos do Gene env/genética , Cadeias beta de HLA-DR/genética , Herpesvirus Humano 4/genética , Humanos , Modelos Moleculares , Mimetismo Molecular , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Proteína Básica da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/genética , Ligação Proteica , Fatores de Risco , Linfócitos T/química , Linfócitos T/imunologia , beta-Sinucleína/genética , beta-Sinucleína/metabolismo
18.
Immunity ; 51(5): 813-825.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31628053

RESUMO

Butyrophilin (BTN) and butyrophilin-like (BTNL/Btnl) heteromers are major regulators of human and mouse γδ T cell subsets, but considerable contention surrounds whether they represent direct γδ T cell receptor (TCR) ligands. We demonstrate that the BTNL3 IgV domain binds directly and specifically to a human Vγ4+ TCR, "LES" with an affinity (∼15-25 µM) comparable to many αß TCR-peptide major histocompatibility complex interactions. Mutations in germline-encoded Vγ4 CDR2 and HV4 loops, but not in somatically recombined CDR3 loops, drastically diminished binding and T cell responsiveness to BTNL3-BTNL8-expressing cells. Conversely, CDR3γ and CDR3δ loops mediated LES TCR binding to endothelial protein C receptor, a clonally restricted autoantigen, with minimal CDR1, CDR2, or HV4 contributions. Thus, the γδ TCR can employ two discrete binding modalities: a non-clonotypic, superantigen-like interaction mediating subset-specific regulation by BTNL/BTN molecules and CDR3-dependent, antibody-like interactions mediating adaptive γδ T cell biology. How these findings might broadly apply to γδ T cell regulation is also examined.


Assuntos
Antígenos/imunologia , Butirofilinas/metabolismo , Seleção Clonal Mediada por Antígeno/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sequência de Aminoácidos , Animais , Antígenos/química , Butirofilinas/química , Linhagem Celular , Epitopos/imunologia , Células Germinativas/metabolismo , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Ligantes , Camundongos , Ligação Proteica/imunologia , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos de Linfócitos T gama-delta/química , Relação Estrutura-Atividade
19.
Nat Commun ; 10(1): 4451, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575864

RESUMO

TCR-gene-transfer is an efficient strategy to produce therapeutic T cells of defined antigen specificity. However, there are substantial variations in the cell surface expression levels of human TCRs, which can impair the function of engineered T cells. Here we demonstrate that substitutions of 3 amino acid residues in the framework of the TCR variable domains consistently increase the expression of human TCRs on the surface of engineered T cells.The modified TCRs mediate enhanced T cell proliferation, cytokine production and cytotoxicity, while reducing the peptide concentration required for triggering effector function up to 3000-fold. Adoptive transfer experiments in mice show that modified TCRs control tumor growth more efficiently than wild-type TCRs. Our data indicate that simple variable domain modifications at a distance from the antigen-binding loops lead to increased TCR expression and improved effector function. This finding provides a generic platform to optimize the efficacy of TCR gene therapy in humans.


Assuntos
Antígenos/imunologia , Engenharia Celular , Genes Codificadores dos Receptores de Linfócitos T/genética , Genes Codificadores dos Receptores de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Expressão Gênica , Terapia Genética , Humanos , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Domínios Proteicos , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
20.
FEBS J ; 286(17): 3299-3332, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287944

RESUMO

The C-type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker-1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.


Assuntos
Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Endotélio Vascular/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Trombomodulina/metabolismo , Animais , Antígenos CD/genética , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/genética , Humanos , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Neoplasias/metabolismo , Neovascularização Fisiológica , Receptores de Complemento/genética , Trombomodulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...