Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Health Sci Eng ; 19(1): 331-341, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33500782

RESUMO

Cough and sneeze droplets' interactions with indoor air of a typical hospital clinic that could be majorly found in developing African countries were studied to investigate the effectiveness of existing guidelines/protocols being adopted in the control of the widespread coronavirus disease (COVID-19) transmission. The influences of indoor air velocity, the type, size distribution, residence time in air, and trajectory of the droplets, were all considered while interrogating the effectiveness of physical distancing measures, the use of face covers, cautionary activities of the general public, and the plausibility of community spread of the SARS-CoV-2 virus through airborne transmission. Series of 3-D, coupled, discrete phase models (DPM) were implemented in the numerical studies. Based on DPM concentration maps as function of particle positions and particle residence times that were observed under different droplets release conditions, the virus-laden droplets could travel several meters away from the source of release (index patient), with smaller-sized particles staying longer in the air. The behavior of indoor air was also found to indicate complex dynamics as particle transports showed no linear dependence on air velocity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-020-00606-5.

2.
Sci Rep ; 9(1): 4475, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872666

RESUMO

This research investigated the removal of heavy metals (As, Pb, Cr, Cd, Ni, Cu, Fe, and Zn) via batch adsorption process from industrial electroplating wastewater using two different nano-adsorbents; purified carbon nanotubes (P-CNTs) and polyhydroxylbutyrate functionalized carbon nanotubes (PHB-CNTs), both produced through catalytic chemical vapour deposition (CCVD) method. HRSEM, HRTEM, XRD, DLS, BET, FTIR, XPS, TGA, pH drift and Raman spectroscopy were used to characterize the developed nano-adsorbents. In the batch adsorption process, the effects of contact time, dosage, temperature and pH were studied. Both nano-adsorbents gave optimum contact time, equilibrium time, optimum dosage, and pH of 10 minutes, 70 minutes, 20 mg, and 5.63-5.65 respectively. The heavy metals removal efficiencies by the nano-adsorbents followed the order of PHB-CNTs > P-CNTs based on ion exchange and electrostatic forces mechanism. For P-CNTs and PHB-CNTs, the equilibrium sorption isotherm suits temkin model, kinetic data fitted to pseudo-second order based on the linear regression correlation coefficient, and the thermodynamic study established spontaneity and endothermic nature of the adsorption process. The findings in this research conclude that both nano-adsorbents have exceptional capacity to remove heavy metals from the adsorbate, with PHB-CNTs possessing better quality. The treated adsorbate meets the standard for industrial or irrigation re-use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA