Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 234: 103677, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32663719

RESUMO

The injection of nanoscale zero-valent iron (nZVI) can be an effective technique for the treatment of groundwater contaminants, including chlorinated solvents. However, its effectiveness can be limited by natural reductant demand (NRD) reactions, including the reduction of water resulting in the production of hydrogen gas. This study presents results from a series of laboratory experiments to investigate gas production and mobilization following the injection of nZVI solutions, along with sodium borohydride (NaBH4) that is used for nZVI synthesis. Experiments were performed in a thin, two-dimensional flow cell (22 × 34 × 1 cm3) to measure hydrogen gas volumes and local gas saturations, and to investigate the distribution of gas within and above the injection zone. An additional experiment was conducted in a larger flow cell (150 × 150 × 2 cm3) containing dissolved trichloroethene (TCE) to assess changes in aqueous flow pathways and enhanced vertical transport of TCE by mobilized gas. The results showed substantial gas production (60% to 740% of the injected solution volume) resulting in gas mobilization as a network of gas channels above the injection zone, with more gas produced from greater excess NaBH4 used during nZVI synthesis. Trapped gas saturations were sufficient to cause the diversion of aqueous flow around the nZVI injection zone. In addition, gas production and mobilization resulted in the bubble-facilitated transport of TCE, and detectable concentrations of TCE and reaction products (ethane and ethene) above the target treatment zone.


Assuntos
Água Subterrânea , Nanopartículas Metálicas , Tricloroetileno , Poluentes Químicos da Água , Hidrogênio , Ferro , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...