Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 142(5): 1242-1254, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30968111

RESUMO

We describe a large consanguineous pedigree from a remote area of Northern Pakistan, with a complex developmental disorder associated with wide-ranging symptoms, including mental retardation, speech and language impairment and other neurological, psychiatric, skeletal and cardiac abnormalities. We initially carried out a genetic study using the HumanCytoSNP-12 v2.1 Illumina gene chip on nine family members and identified a single region of homozygosity shared amongst four affected individuals on chromosome 7p22 (positions 3059377-5478971). We performed whole-exome sequencing on two affected individuals from two separate branches of the extended pedigree and identified a novel nonsynonymous homozygous mutation in exon 9 of the WIPI2 (WD-repeat protein interacting with phosphoinositide 2) gene at position 5265458 (c.G745A;pV249M). WIPI2 plays a critical role in autophagy, an evolutionary conserved cellular pathway implicated in a growing number of medical conditions. The mutation is situated in a highly conserved and critically important region of WIPI2, responsible for binding PI(3)P and PI(3,5)P2, an essential requirement for autophagy to proceed. The mutation is absent in all public databases, is predicted to be damaging and segregates with the disease phenotype. We performed functional studies in vitro to determine the potential effects of the mutation on downstream pathways leading to autophagosome assembly. Binding of the V231M mutant of WIPI2b to ATG16L1 (as well as ATG5-12) is significantly reduced in GFP pull-down experiments, and fibroblasts derived from the patients show reduced WIPI2 puncta, reduced LC3 lipidation and reduced autophagic flux.


Assuntos
Autofagia/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas de Ligação a Fosfato/genética , Adulto , Sequência de Aminoácidos , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Proteínas de Ligação a Fosfato/química , Estrutura Secundária de Proteína
2.
Saudi J Biol Sci ; 23(5): 571-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27579005

RESUMO

Papillon-Lefevre syndrome (PALS) is a rare, autosomal recessive disorder characterized by periodontitis and hyperkeratosis over the palms and soles. Mutations in the cathepsin C gene (CTSC) have been recognized as the cause of PALS since the late 1990s. More than 75 mutations in CTSC have been identified, and phenotypic variability between different mutations has been described. Next generation sequencing is widely used for efficient molecular diagnostics in various clinical practices. Here we investigated a large consanguineous Saudi family with four affected and four unaffected individuals. All of the affected individuals suffered from hyperkeratosis over the palms and soles and had anomalies of both primary and secondary dentition. For molecular diagnostics, we combined whole-exome sequencing and genome-wide homozygosity mapping procedures, and identified a recurrent homozygous missense mutation (c.899G>A; p.Gly300Asp) in exon 7 of CTSC. Validation of all eight family members by Sanger sequencing confirmed co-segregation of the pathogenic variant (c.899G>A) with the disease phenotype. This is the first report of whole-exome sequencing performed for molecular diagnosis of PALS in Saudi Arabia. Our findings provide further insights into the genotype-phenotype correlation of CTSC pathogenicity in PALS.

3.
J Clin Res Pediatr Endocrinol ; 8(4): 472-477, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27087618

RESUMO

Perrault syndrome (PRLTS) is a heterogeneous group of clinical and genetic disorders characterized by sensory neuronal hearing loss in both sexes and premature ovarian failure or infertility in females. Neurological and hearing loss symptoms appear early in life, but female infertility cannot be detected before puberty. Spastic limbs, muscle weakness, delayed puberty and irregular menstrual cycles have also been observed in PRLTS patients. Mutations in five genes, i.e. HSD17B4, HARS2, CLPP, LARS2, and C10orf2, have been reported in five subtypes of PRLTS. Here, we report a milder phenotype of PRLTS in a Turkish family in which two affected patients had no neurological findings. However, both were characterized by sensory neuronal hearing loss and the female sibling had secondary amenorrhea and gonadal dysgenesis. Genome-wide homozygosity mapping using 300K single-nucleotide polymorphism microarray analysis together with iScan platform (Illumina, USA) followed by candidate gene Sanger sequencing with ABI 3500 Genetic Analyzer (Life Technologies, USA) were used for molecular diagnosis. We found a novel missense alteration c.624C>G; p.Ile208Met in exon 5 of the CLPP at chromosome 19p13.3. This study expands the mutation spectrum of CLPP pathogenicity in PRLTS type 3 phenotype.


Assuntos
Endopeptidase Clp/genética , Predisposição Genética para Doença/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Adolescente , Mapeamento Cromossômico , Cromossomos Humanos Par 19/genética , Saúde da Família , Feminino , Genoma Humano/genética , Genótipo , Humanos , Masculino , Análise de Sequência de DNA , Turquia , Adulto Jovem
4.
J Neurol Sci ; 363: 240-4, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27000257

RESUMO

Autosomal recessive primary microcephaly (MCPH) refers to a genetically heterogeneous group of neurodevelopmental disorders in which patients exhibit a marked decrease in occipitofrontal head circumference at birth and a variable degree of intellectual disability. To date, 18 genes have been reported for MCPH worldwide. We enrolled a consanguineous family from Saudi Arabia presenting with primary microcephaly, developmental delay, short stature and intellectual disability. Whole exome sequencing (WES) with 100× coverage was performed on two affected siblings after defining common regions of homozygosity through genome-wide single nucleotide polymorphism (SNP) microarray genotyping. WES data analysis, confirmed by subsequent Sanger sequence validation, identified a novel homozygous deletion mutation (c.967delA; p.Glu324Lysfs12*) in exon 10 of the alkylglycerol monooxygenase (AGMO) gene on chromosome 7p21.2. Population screening of 178 ethnically matched control chromosomes and consultation of the Exome Aggregation Consortium database, containing 60,706 individuals' exomes worldwide, confirmed that this mutation was not present outside the family. To the best of our knowledge, this is the first evidence of an AGMO mutation underlying primary microcephaly and intellectual disability in humans. Our findings further expand the genetic heterogeneity of MCPH in familial cases.


Assuntos
Transtorno Autístico/genética , Consanguinidade , Microcefalia/diagnóstico , Microcefalia/genética , Oxigenases de Função Mista/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Linhagem , Arábia Saudita
5.
Arch Oral Biol ; 67: 28-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27019138

RESUMO

OBJECTIVES: The present study aimed to identify the genetic cause of non-syndromic primary failure of tooth eruption in a five-generation consanguineous Saudi family using whole-exome sequencing (WES) analysis. DESIGN: The family pedigree and phenotype were obtained from patient medical records. WES of all four affected family members was performed using the 51 Mb SureSelect V4 library kit and then sequenced using the Illumina HiSeq2000 sequencing system. Sequence alignment, variant calling, and the annotation of single nucleotide polymorphisms and indels were performed using standard bioinformatics pipelines. The genotype of candidate variants was confirmed in all available family members by Sanger sequencing. RESULTS: Pedigree analysis suggested that the inheritance was autosomal recessive. WES of all affected individuals identified a novel homozygous variant in exon 8 of the parathyroid hormone 1 receptor gene (PTH1R) (NM_000316: c.611T>A: p.Val204Glu). CONCLUSION: To the best of our knowledge, this is the first report of primary failure of eruption caused by a homozygous mutation in PTH1R. Our findings prove the application of WES as an efficient molecular diagnostics tool for this rare phenotype and further broaden the clinical spectrum of PTH1R pathogenicity.


Assuntos
Consanguinidade , Exoma , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Anormalidades Dentárias/genética , Erupção Dentária/genética , Adolescente , Sequência de Bases , Criança , Éxons , Feminino , Genes Recessivos , Homozigoto , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Arábia Saudita , Adulto Jovem
6.
BMC Res Notes ; 8: 271, 2015 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-26113134

RESUMO

BACKGROUND: Hereditary spastic paraplegias (HSP), a group of genetically heterogeneous neurological disorders with more than 56 documented loci (SPG1-56), are described either as uncomplicated (or pure), or complicated where in addition to spasticity and weakness of lower extremeties, additional neurological symptoms are present, including dementia, loss of vision, epilepsy, mental retardation and ichthyosis. We identified a large consanguineous family of Indian descent with four affected members with childhood onset HSP (SPG54), presenting with upper and lower limb spasticity, mental retardation and agenesis of the corpus callosum. RESULTS: A common region of homozygosity on chromosome 8 spanning seven megabases (Mb) was identified in the affected individuals using the Illumina human cytoSNP-12 DNA Analysis BeadChip Kit. Exome sequencing identified a homozygous stop gain mutation (pR287X) in the phospholipase A1 gene DDHD2, in the affected individuals, resulting in a premature stop codon and a severely truncated protein lacking the SAM and DDHD domains crucial for phosphoinositide binding and phospholipase activity. CONCLUSION: This mutation adds to the knowledge of HSP, suggests a possible founder effect for the pR287X mutation, and adds to the list of genes involved in lipid metabolism with a role in HSP and other neurodegenerative disorders.


Assuntos
Agenesia do Corpo Caloso/genética , Osso e Ossos/anormalidades , Códon sem Sentido , Deficiência Intelectual/genética , Mutação , Fosfolipases/genética , Paraplegia Espástica Hereditária/genética , Agenesia do Corpo Caloso/patologia , Sequência de Bases , Osso e Ossos/patologia , Pré-Escolar , Cromossomos Humanos Par 8 , Consanguinidade , Análise Mutacional de DNA , Exoma , Feminino , Homozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Metabolismo dos Lipídeos/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Terciária de Proteína , Paraplegia Espástica Hereditária/patologia
7.
J Neurol Sci ; 353(1-2): 149-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25956234

RESUMO

Perrault syndrome (PRLTS) is a clinically and genetically heterogeneous disorder. Both male and female patients suffer from sensory neuronal hearing loss in early childhood, and female patients are characterized by premature ovarian failure and infertility after puberty. Clinical diagnosis may not be possible in early life, because key features of PRLTS, for example infertility and premature ovarian failure, do not appear before puberty. Limb spasticity, muscle weakness, and intellectual disability have also been observed in PRLTS patients. Mutations in five genes, HSD17B4, HARS2, CLPP, LARS2, and C10orf2, have been reported in five subtypes of PRLTS. We discovered a consanguineous Saudi family with the PRLTS3 phenotype showing an autosomal recessive mode of inheritance. The patients had developed profound hearing loss, brain atrophy, and lower limb spasticity in early childhood. For molecular diagnosis, we complimented genome-wide homozygosity mapping with whole exome sequencing analyses and identified a novel homozygous mutation in exon 6 of CLPP at chromosome 19p13.3. To our knowledge, early onset with regression is a unique feature of these PRLTS patients that has not been reported so far. This study broadens the clinical spectrum of PRLTS3.


Assuntos
Consanguinidade , Endopeptidase Clp/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto/genética , Encéfalo/patologia , Criança , Aberrações Cromossômicas , Análise Mutacional de DNA , Saúde da Família , Feminino , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Reprodutibilidade dos Testes , Arábia Saudita/epidemiologia
8.
Eur J Med Genet ; 58(4): 216-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25721873

RESUMO

Congenital generalized lipodystrophies (CGLs) are a heterogeneous group of rare, monogenic disorders characterized by loss of sub-cutaneous fat, muscular hypertrophy, acanthosis nigricans, hepatomegaly, cardiac arrhythmias, impaired metabolism and mental retardation. Four different but overlapping phenotypes (CGL1-4) have been identified, which are caused by mutations in AGPAT2 at 9q34.3, BSCL2 at 11q13, CAV1 at 7q31.1, and PTRF at 17q21.2. In this study, we performed genome-wide homozygosity mapping of two affected and one unaffected subject in a Saudi family using a 300K HumanCytoSNPs12v12.1 array with the Illumina iScan system. A common homozygous region at chromosome 17q22.1, from 34.4 to 45.3 Mb, was identified in both the affected individuals. The region is flanked by SNPs rs139433362 and rs185263326, which encompass the PTRF gene. Bidirectional DNA sequencing of the PTRF gene covering all of the coding exons and exon-intron boundaries was performed in all family members. Sequencing analysis identified a novel homozygous nonsense mutation in the PTRF gene (c.550G>T; p.Glu184*), leading to a premature stop codon. To the best of our knowledge, we present a novel mutation of PTRF from Saudi Arabia and our findings broaden the mutation spectrum of PTRF in the familial CGL4 phenotype. Homozygosity mapping coupled with candidate gene sequencing is an effective tool for identifying the causative pathogenic variants in familial cases.


Assuntos
Códon sem Sentido/genética , Lipodistrofia Generalizada Congênita/genética , Proteínas de Ligação a RNA/genética , Sequência de Bases , Criança , Pré-Escolar , Cromossomos Humanos Par 17/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Arábia Saudita , Análise de Sequência de DNA
9.
Comput Math Methods Med ; 2014: 904052, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723968

RESUMO

GalNAc-T1, a key candidate of GalNac-transferases genes family that is involved in mucin-type O-linked glycosylation pathway, is expressed in most biological tissues and cell types. Despite the reported association of GalNAc-T1 gene mutations with human disease susceptibility, the comprehensive computational analysis of coding, noncoding and regulatory SNPs, and their functional impacts on protein level, still remains unknown. Therefore, sequence- and structure-based computational tools were employed to screen the entire listed coding SNPs of GalNAc-T1 gene in order to identify and characterize them. Our concordant in silico analysis by SIFT, PolyPhen-2, PANTHER-cSNP, and SNPeffect tools, identified the potential nsSNPs (S143P, G258V, and Y414D variants) from 18 nsSNPs of GalNAc-T1. Additionally, 2 regulatory SNPs (rs72964406 and #x26; rs34304568) were also identified in GalNAc-T1 by using FastSNP tool. Using multiple computational approaches, we have systematically classified the functional mutations in regulatory and coding regions that can modify expression and function of GalNAc-T1 enzyme. These genetic variants can further assist in better understanding the wide range of disease susceptibility associated with the mucin-based cell signalling and pathogenic binding, and may help to develop novel therapeutic elements for associated diseases.


Assuntos
N-Acetilgalactosaminiltransferases/genética , Polimorfismo de Nucleotídeo Único , Algoritmos , Sequência de Aminoácidos , Teorema de Bayes , Sítios de Ligação , Biologia Computacional/métodos , Simulação por Computador , Sequência Conservada , Mineração de Dados/métodos , Suscetibilidade a Doenças , Evolução Molecular , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Software , Eletricidade Estática , Polipeptídeo N-Acetilgalactosaminiltransferase
10.
Artigo em Inglês | MEDLINE | ID: mdl-22255028

RESUMO

The pace of technology has allowed classification of feature-subset of methylated and unmethylated of CpG islands of DNA sequence properties. As methylation of CpG islands is involved in various biological phenomena and function of the DNA methylation is correlated to various human diseases such as cancer, analysis of the CpG islands has become important and useful in characterizing and modelling biological phenomena and understanding mechanism of such diseases. However, analysis of the data associated with the CpG islands is a quite new and challenging subject in bioinformatics, systems biology and epigenetics. In this paper, the problems associated with prediction of methylated and unmethylated CpG islands on human chromosome 21q are addressed. In order to carry out the prediction, a data set of 132 samples of the CpG islands from human peripheral blood leukocytes of chromosomes 21q and 4 different feature sub-sets totalling 44 attributes that characterise the methylated and unmethylated groups is extracted for each sample. Due to the nature of this unbalanced data set, in order to avoid disadvantages of traditional leave-one-out (LOO) and m-fold cross validation methods, the LOO method is modified by incorporating the m-fold cross validation approach. In addition, K-nearest neighbour classifier is then adapted for the prediction. The results gained through 440 different comprehensive analyses shows that the methylated CpG islands can be distinguished from the unmethylated CpG islands by a predictive accuracy of between 75% and 80%. More importantly, the modified LOO identifies more clearly and reliably when the feature sub-sets are combined. Another interesting observation is that the modified-LOO-based analysis reveals that the CpGI-specific feature-set achieve the highest predictive accuracy when combined with the other feature sets, which is not the case in the traditional LOO. This also further supports the robustness of the modified-LOO cross validation approach as CpGI-specific feature-set is one of the most important and effective attributes shown in other studies.


Assuntos
Cromossomos Humanos Par 21 , Ilhas de CpG , Metilação de DNA , Leucócitos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...