Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Indian Acad Neurol ; 25(1): 106-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342266

RESUMO

Background: Lipid storage myopathies (LSM) constitute an important group of treatable myopathies. Genetic testing is essential for confirming the diagnosis and also helps in explaining phenotypic heterogeneity. The objective of this study was to describe the clinical features and genetic spectrum of LSM seen in a quaternary referral center in India. Methods: Eleven cases of suspected LSM underwent clinical, biochemical, histopathological and genetic evaluation. Tandem Mass Spectrometry and clinical exome sequencing with Sanger validation were performed. Results: All patients had exertion induced myalgia and either progressive or episodic limb girdle muscle weakness (LGMW). The age of onset ranged 10 to 31 years (mean- 21 ± 6.7y), age at presentation- 14 to 49 years (mean- 26.5 ± 9.5y). Mutations identified: ETFDH = 5, CPT2 = 3, FLAD1 = 1, ACADVL = 1, FLAD1 = 1. Dropped head syndrome was seen in two patients with ETFDH mutations. Bulbar symptoms and Beevor's sign were noted in a patient with FLAD1 variant. Novel variants were identified in seven patients. Conclusions: This is the first report on the genetic spectrum of LSM from India. LSM should be considered in patients with exertion induced myalgias, LGMW, cranial nerve involvement or dropped head syndrome. Genetic testing is essential for identification of these treatable disorders.

2.
Glob Med Genet ; 9(1): 34-41, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35169782

RESUMO

Calpainopathy is caused by mutations in the CAPN3 . There is only one clinical and genetic study of CAPN3 from India and none from South India. A total of 72 (male[M]:female [F] = 34:38) genetically confirmed probands from 72 independent families are included in this study. Consanguinity was present in 54.2%. The mean age of onset and duration of symptoms are 13.5 ± 6.4 and 6.3 ± 4.7 years, respectively. Positive family history occurred in 23.3%. The predominant initial symptoms were proximal lower limb weakness (52.1%) and toe walking (20.5%). At presentation, 97.2% had hip girdle weakness, 69.4% had scapular winging, and 58.3% had contractures. Follow-up was available in 76.4%, and 92.7% were ambulant at a mean age of 23.7 ± 7.6 years and duration of 4.5 years, remaining 7.3% became wheelchair-bound at 25.5 ± 5.7 years of age (mean duration = 13.5 ± 4.6), 4.1% were aged more than 40 years (duration range = 5-20). The majority remained ambulant 10 years after disease onset. Next-generation sequencing (NGS) detected 47 unique CAPN3 variants in 72 patients, out of which 19 are novel. Missense variants were most common occurring in 59.7% (homozygous = 29; Compound heterozygous = 14). In the remaining 29 patients (40.3%), at least one suspected loss of function variant was present. Common recurrent variants were c.2051-1G > T and c.2338G > C in 9.7%, c.1343G > A, c.802-9G > A, and c.1319G > A in 6.9% and c.1963delC in 5.5% of population. Large deletions were observed in 4.2%. Exon 10 mutations accounted for 12 patients (16.7%). Our study highlights the efficiency of NGS technology in screening and molecular diagnosis of limb-girdle muscular dystrophy with recessive form (LGMDR1) patients in India.

3.
J Neuromuscul Dis ; 9(1): 95-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34633329

RESUMO

BACKGROUND AND PURPOSE: Mutations in the GMPPB gene affect glycosylation of α-dystroglycan, leading to varied clinical phenotypes. We attempted to delineate the muscle MR imaging spectrum of GMPPB-related Congenital Myasthenic syndrome (CMS) in a single-center cohort study. OBJECTIVE: To identify the distinct patterns of muscle involvement in GMPPB gene mutations. METHODS: We analyzed the muscle MR images of 7 genetically proven cases of GMPPB dystroglycanopathy belonging to three families and studied the potential qualitative imaging pattern to aid in clinico -radiological diagnosis in neuromuscular practice. All individuals underwent muscle MRI (T1, T2, STIR/PD Fat sat. sequences in 1.5 T machine) of the lower limbs. Qualitative assessment and scoring were done for muscle changes using Mercuri staging for fibro-fatty replacement on T1 sequence and Borsato score for myoedema on STIR sequence. RESULTS: All patients were of South Indian origin and presented as slowly progressive childhood to adult-onset fatigable limb-girdle muscle weakness, elevated creatine kinase level, and positive decrement response in proximal muscles. Muscle biopsy revealed features of dystrophy. All patients demonstrated identical homozygous mutation c.1000G > A in the GMPPB gene. MRI demonstrated early and severe involvement of paraspinal muscles, gluteus minimus, and relatively less severe involvement of the short head of the biceps femoris. A distinct proximo-distal gradient of affliction was identified in the glutei, vasti, tibialis anterior and peronei. Also, a postero-anterior gradient was observed in the gracilis muscle. CONCLUSION: Hitherto unreported, the distinctive MR imaging pattern described here, coupled with relatively slowly progressive symptoms of fatigable limb-girdle weakness, would facilitate an early diagnosis of the milder form of GMPPB- dystroglycanopathy associated with homozygous GMPPB gene mutation.


Assuntos
Músculo Esquelético/patologia , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Adulto , Estudos de Coortes , Humanos , Índia , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Síndromes Miastênicas Congênitas/diagnóstico por imagem , Linhagem
4.
J Clin Neurol ; 17(3): 409-418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34184449

RESUMO

BACKGROUND AND PURPOSE: Pathogenic variants in the myopalladin gene (MYPN) are known to cause mildly progressive nemaline/cap myopathy. Only nine cases have been reported in the English literature. METHODS: A detailed evaluation was conducted of the clinical, muscle magnetic resonance imaging (MRI), and genetic findings of two unrelated adults with MYPN-related cap myopathy. Genetic analysis was performed using whole-exome sequencing. MRI was performed on a 1.5-T device in patient 1. RESULTS: Two unrelated adults born to consanguineous parents, a 28-year-old male and a 23-year-old female, were diagnosed with pathogenic variants in MYPN that cause cap myopathy. Both patients presented with early-onset, insidiously progressive, and minimally disabling proximodistal weakness with mild ptosis, facial weakness, and bulbar symptoms. Patient 1 had a prominent foot drop from the onset. Both patients were followed up at age 30 years, at which point serum creatine kinase concentrations were minimally elevated. There were no cardiac symptoms; electrocardiograms and two-dimensional echocardiograms were normal in both patients. Muscle MRI revealed preferential involvement of the glutei, posterior thigh muscles, and anterior leg muscles. Whole-exome sequencing revealed significant homozygous splice-site variants in both of the probands, affecting intron 10 of MYPN: c.1973+1G>C (patient 1) and c.1974-2A>C (patient 2). CONCLUSIONS: This study elaborates on two patients with homozygous MYPN pathogenic variants, presenting as slowly progressive congenital myopathy. These patients are only the tenth and eleventh cases reported in the English literature, and the first from South Asia. The clinical phenotype reiterates the mild form of nemaline rod/cap myopathy. A comprehensive literature review is presented.

5.
J Neuromuscul Dis ; 8(4): 525-535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33843695

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder caused due to large deletions, duplications,and small pathogenic variants. This article compares the carrier frequency of different pathogenic variants in the DMD gene for the first time in an Indian cohort. METHODS: Ninety-one mothers of genetically confirmed DMD probands are included in this study. Pathogenic variants in the DMD gene in probands were detected by multiplex ligation-dependent probe amplification (MLPA) or next-generation sequencing (NGS). Maternal blood samples were evaluated either by MLPA or Sanger sequencing. The demographic and clinical details for screening of muscle weakness and cardiomyopathy were collected from the confirmed carriers. RESULTS: Out of 91 probands, large deletions and duplications were identified in 46 and 6 respectively, while 39 had small variants. Among the small variants, substitutions predicted to cause nonsense mutations were the most common (61.5%), followed by frameshift causing small insertion/deletions (25.6%) and splice affecting intronic variants (12.8%). Notably, 19 novel small variants predicted to be disease-causing were identified. Of the 91 mothers, 53 (58.7%) were confirmed to be carriers. Exonic deletions had a significantly lower carrier frequency of 47.8% as compared to small variants (64.1%). The mean age of the carriers at evaluation was 30 years. Among the carriers, two were symptomatic with onset in the 4th decade, manifesting with progressive proximal muscle weakness and dilated cardiomyopathy. CONCLUSION: Carrier frequency of small pathogenic variants differs significantly from large deletions. Small pathogenic variants are more commonly inherited, whereas large deletions arise de novo.


Assuntos
Distrofia Muscular de Duchenne/genética , Adulto , Estudos de Coortes , Distrofina/genética , Éxons , Feminino , Mutação da Fase de Leitura , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Reação em Cadeia da Polimerase Multiplex , Mutação de Sentido Incorreto
7.
J Hum Genet ; 66(8): 813-823, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33712684

RESUMO

Megaconial congenital muscular dystrophy (CMD)(OMIM #602541), related to CHKB mutation, is a rare autosomal recessive disorder. To date, only 35 confirmed patients are recorded. We present a detailed description of the clinical, histopathological, imaging, and genetic findings of five children from four Indian families. The children had moderate-to-severe autistic behavior, hand stereotypies, and global developmental delay mimicking atypical Rett syndrome. In addition, generalized hypotonia was a common initial finding. The progression of muscle weakness was variable, with two patients having a milder phenotype and three having a severe form. Interestingly, the majority did not attain sphincter control. Only patient 1 had classical ichthyotic skin changes. Muscle biopsy in two patients showed a myopathic pattern with characteristic peripherally placed enlarged mitochondria on modified Gomori trichrome stain and electron microscopy. Genetic analysis in these patients identified three novel null mutations in CHKB [c.1027dupA (p.Ser343LysfsTer86);c.224 + 1G > T (5' splice site); c.1123C > T (p.Gln375Ter)] and one reported missense mutation, c.581G > A (p.Arg194Gln), all in the homozygous state. Megaconial CMD, although rare, forms an important group with a complex phenotypic presentation and accounted for 5.5% of our genetically confirmed CMD patients. Atypical Rett syndrome-like presentation may be a clue towards CHKB-related disorder.


Assuntos
Colina Quinase/genética , Mitocôndrias/genética , Distrofias Musculares/genética , Distrofias Musculares/patologia , Síndrome de Rett/genética , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Testes Genéticos , Humanos , Lactente , Masculino , Mitocôndrias/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Distrofias Musculares/congênito , Mutação , Fenótipo , Estudos Retrospectivos
8.
Eur J Paediatr Neurol ; 31: 54-60, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33631708

RESUMO

Three unrelated girls, all born to consanguineous parents had respiratory distress, severe hypotonia at birth along with prominent fatigable muscle weakness and characteristic myopathic facies. In addition, patient 1 had fatigable ptosis, ophthalmoparesis and profound bulbar weakness and required nasogastric feeding from birth. A feeding gastrostomy was inserted at 9 months of age. She continued to have severe bulbar and limb weakness with dropped head at 5 years of age. Patient 2 and 3 did not have ocular signs at the time of initial presentation during infancy and at 2 years of age respectively. None of the patients attained independent walking. Patient 3, currently aged 16 years continues to be wheelchair bound and has only mild non-progressive bulbar weakness with normal cognitive development. Muscle biopsy in patient 1 and 3 showed predominant myopathic features admixed with small sized (atrophic/hypoplastic) fibres. Next generation sequencing confirmed the presence of a homozygous loss of function VAMP1 mutations in all three patients: A single nucleotide deletion resulting in frameshift: c.66delT (p.Gly23AlafsTer6) in patient 1 and nonsense mutations c.202C>T (pArg68Ter) and c.97C>T (p.Arg33Ter) in patient 2 and 3 respectively. Minimal but definite improvement in muscle power with pyridostigmine was reported in patients 1 and 2. This is the first report of VAMP1 mutations causing CMS from the Indian subcontinent, describing a clinically recognizable severe form of VAMP1-related CMS and highlighting the need for a strong index of suspicion for early genetic diagnosis of potentially treatable CMS phenotypes.


Assuntos
Síndromes Miastênicas Congênitas/genética , Proteína 1 Associada à Membrana da Vesícula/genética , Adolescente , Criança , Pré-Escolar , Consanguinidade , Feminino , Homozigoto , Humanos , Índia , Lactente , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...