Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(4): 101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464615

RESUMO

Osteoporosis is a common metabolic old age disorder characterised by low bone mass content (BMC) and mineral density (BMD) with micro-architectural deterioration of the extracellular matrix, further increasing bone fragility risk. Several traditional remedies, including plant extracts and herbal formulations, are used worldwide by local healers to improve the overall bone health and metabolism as an excellent osteoregenerative agent. Pteropsermum rubiginosum is an underexplored medicinal plant used by tribal peoples of Western Ghats, India, to treat bone fractures and associated inflammation. The proposed study evaluates the elemental profiling and phytochemical characterisation of P. rubiginosum methanolic bark extract (PRME), along with detailed In vitro and In vivo biological investigation in MG-63 cells and Sprague-Dawley (SD) rats. AAS and ICP-MS analysis showed the presence of calcium, phosphorus, and magnesium and exceptional levels of strontium, chromium, and zinc in PRME. The NMR characterisation revealed the presence of vanillic acid, Ergost-4-ene-3-one and catechin. The molecular docking studies revealed the target pockets of isolated compounds and various marker proteins in the bone remodelling cycle. In vitro studies showed a significant hike in ALP and calcium content, along with upregulated mRNA expression of the ALP and COL1, which confirmed the osteoinductive activity of PRME in human osteoblast-like MG-63 cells. The in vivo evaluation in ovariectomised (OVX) rats showed remarkable recovery in ALP, collagen and osteocalcin protein after 3 months of PRME treatment. DEXA scanning reports in OVX rats supported the above in vitro and in vivo results, significantly enhancing the BMD and BMC. The results suggest that PRME can induce osteogenic activity and enhance bone formation with an excellent osteoprotective effect against bone loss in OVX animals due to estrogen deficiency. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03942-7.

2.
J Ethnopharmacol ; 308: 116262, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36796743

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE OF STUDY: Pterospermum rubiginosum is an evergreen plant in Western Ghats, India, used by traditional tribal healers due to its excellent biological potential for treating inflammation and pain relief procedures. The bark extract is also consumed to relieve the inflammatory changes at the bone fractured site. The traditional medicinal plant in India have to be characterized for its diverse phytochemical moieties, its interactive multiple target sites, and to reveal the hidden molecular mechanism behind the biological potency. AIM OF THE STUDY: The study focussed on plant material characterization, computational analysis (prediction study), toxicological screening (In vivo), and anti-inflammatory evaluation of P. rubiginosum methanolic bark extracts (PRME) in LPS-induced RAW 264.7 cells. MATERIALS AND METHODS: The pure compound isolation of PRME and their biological interactions were used to predict the bioactive components, molecular targets, and molecular pathways of PRME in inhibiting inflammatory mediators. The anti-inflammatory effects of PRME extract were evaluated in the lipopolysaccharide (LPS)-induced RAW264.7 macrophage cell model. The toxicity evaluation of PRME was performed in healthy 30 Sprague-Dawley experimental rats, were randomly divided into five groups for toxicological evaluation for 90 days. The tissue levels of oxidative stress and organ toxicity markers were measured using the ELISA method. Nuclear magnetic resonance spectroscopy (NMR) was performed to characterize the bioactive molecules. RESULTS: Structural characterization revealed the presence of vanillic acid, 4-O-methyl gallic acid, E-resveratrol, gallocatechin, 4'-O-methyl gallocatechin, and catechin. Molecular docking of NF-kB exhibited significant interactions with vanillic acid and 4-O-methyl gallic acid with binding energy -351.159 Kcal/Mol and -326.5505 Kcal/Mol, respectively. The PRME-treated animals showed an increase in total GPx and antioxidant levels (SOD and catalase). Histopathological examination revealed no variation in the liver, renal and splenic tissue's cellular pattern. PRME inhibited the pro-inflammatory parameters (IL-1ß, IL-6, and TNF-α) in LPS-induced RAW 264.7 cells. The protein level of TNF-α and NF-kB protein expression study brought out a notable reduction and exhibited a good correlation with the gene expression study. CONCLUSION: The current study establishes the therapeutic potential of PRME as an effective inhibitory agent against LPS-activated RAW 264.7 cells induced inflammatory mediators. Long-term toxicity evaluation on SD rats confirmed the non-toxic nature of PRME up to 250mg/body weight for 3 months.


Assuntos
NF-kappa B , Extratos Vegetais , Ratos , Animais , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Casca de Planta/química , Simulação de Acoplamento Molecular , Ácido Vanílico/análise , Ácido Vanílico/uso terapêutico , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Ácido Gálico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...