Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 5(3): 433-49, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20394536

RESUMO

AIM: To develop a suitable formulation of curcumin-encapsulated methoxy poly(ethylene glycol) (MePEG)/poly-epsilon-caprolactone (PCL) diblock copolymeric micelle by varying the copolymer ratio, for achieving small sized micelles with high encapsulation of curcumin. To evaluate the micelle's aqueous solubility and stability, efficiency of cellular uptake, cell cytotoxicity and ability to induce apoptosis on pancreatic cell lines. METHOD: Amphiphilic diblock copolymers (composed of MePEG and PCL) were used in various ratios for the preparation of curcumin-encapsulated micelles using a modified dialysis method. Physicochemical characterization of the formulation included size and surface charge measurement, transmission electron microscopy characterization, spectroscopic analysis, stability and in vitro release kinetics studies. The anticancer efficacy of the curcumin-encapsulated micelle formulation was compared with unmodified curcumin in terms of cellular uptake, cell cytotoxicity and apoptosis of pancreatic cell lines MIA PaCa-2 and PANC-1. RESULTS: Physiochemical characterization of the formulations revealed that curcumin was efficiently encapsulated in all formulation of MePEG/PCL micelles; however, a 40:60 MePEG:PCL ratio micelle was chosen for experimental studies owing to its high encapsulation (approximately 60%) with size (approximately 110 nm) and negative zeta potential (approximately -16 mV). Curcumin-encapsulated micelles increased the bioavailability of curcumin due to enhanced uptake (2.95 times more compared with unmodified) with comparative cytotoxic activity (by induction of apoptosis) compared with unmodified curcumin at equimolar concentrations. IC(50) values for unmodified curcumin and curcumin micelles were found to be 24.75 microM and 22.8 microM for PANC-1 and 14.96 microM and 13.85 microM for MIA PaCa-2, respectively. Together the results clearly indicate the promise of a micellar system for efficient solubilization, stabilization and controlled delivery of the hydrophobic drug curcumin for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Micelas , Neoplasias Pancreáticas/tratamento farmacológico , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacocinética , Curcumina/farmacologia , Humanos , Solubilidade
2.
Drug Deliv ; 17(5): 330-42, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20370380

RESUMO

Amphiphilic diblock copolymers composed of methoxy poly ethylene glycol (MePEG) and poly epsilon caprolactone (PCL) were synthesized for the formation of micelles by ring opening mechanism using stannous octoate as a catalyst. The effects of the molecular weight of MePEG and the copolymer ratio on the properties of micelles were investigated by Nuclear Magnetic Resonance ((1)H-NMR), Fourier Transform Infrared Spectroscopy (FT-IR), and Gel Permeation Chromatography (GPC). The diblock copolymers were self-assembled to form micelles and their hydrophobic core was used for the encapsulation of the anti-cancer drug (etoposide) in aqueous solution. The sizes of micelles were less than 250 nm with a narrow size distribution with monodispersed unimodal pattern. Differential Scanning Calorimetric (DSC) thermogram was done for etoposide-loaded micelles to understand the crystalline nature of the drug after entrapment. A drug loading capacity up to 60% (w/w) with an entrapment efficiency of 68% was achieved as determined by reverse phase high performance liquid chromatography (RP-HPLC). In vitro release kinetics showed a biphasic release pattern of etoposide for 2 weeks. The cytotoxic efficacy of the etoposide-loaded micelles demonstrated greater anti-proliferative activity (IC(50) = 1.1 microg/ml) as compared to native drug (IC(50) = 6.3 microg/ml) in pancreatic cancer cell line MIA-PaCa-2. Thus, etoposide-loaded MePEG/PCL block copolymeric micelles can be used as an efficient drug delivery vehicle for pancreatic cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Etoposídeo/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos Fitogênicos/farmacologia , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cristalização , Preparações de Ação Retardada , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Etoposídeo/farmacologia , Humanos , Concentração Inibidora 50 , Micelas , Peso Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...