Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38687455

RESUMO

Investigation on accumulation of cell wall components over critical growth stages will surely provide a new insight into dry matter accumulation studies in rice. An elevated biomass production provides an alternative strategy of yield improvement, which in turn maneuvers the species concerned as potential dual-purpose crop. On that note, present study was carried on 33 early and 39 medium duration rice genotypes. The average cellulose accumulation was 6.51% and 8.17% in early and medium duration genotypes, respectively, at flowering stage, which later on dipped to 1.43% and 3.46%, respectively, at physiological maturity. The gene specific marker MDgsp-5.a exhibited highest estimate of polymorphic information content (PIC), i.e., 0.685, closely followed by MDgsp-6.a with polymorphic information content (PIC) of 0.683. The control genotypes, i.e., Pratap and Mandakini, are grouped under the same cluster, i.e., Cluster-I.A, indicating their inherent genetic divergence from that of potential accumulators pertaining to cellulose accumulation. Pratap and Mandakini failed to produce peaks of conspicuous form at 3342 cm-1 and 1635 cm-1, bearing out by their low performance pertaining to cellulose and lignin accumulation at the later stages of development, respectively. From histochemistry studies, it was observed that the cell walls of sclerenchyma, peripheral vascular bundles, and parenchyma of the culm transections in control genotypes stained lightly than that of prolific accumulator cell walls, thus corroborating the findings of compositional analysis. The variation in cell wall thickening is primarily accounted due to altered carbohydrate accumulation across the growth stages as explored under scanning electron micrograph.

2.
Mol Biol Rep ; 50(12): 10509-10524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921982

RESUMO

The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.


Assuntos
Arabidopsis , Oryza , Lignina/metabolismo , Melhoramento Vegetal , Celulose/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Polímeros , Oryza/genética , Oryza/metabolismo , Arabidopsis/metabolismo , Etanol/metabolismo , Biomassa
3.
Mol Biol Rep ; 50(7): 5535-5545, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37155011

RESUMO

BACKGROUND: Lignocellulosic biomass from rice straw possesses enormous potential in generating bioenergy thereby reducing the dependence of human on non-renewable fuel sources. Developing rice varieties of such calibre necessitates biochemical characterization as well as assessing the presence of genetic diversity among the rice genotypes with respect to cellulose content. METHODS AND RESULTS: Forty-three elite rice genotypes were selected for biochemical characterization and SSR marker-based genetic fingerprinting. For genotyping, 13 cellulose synthase specific polymorphic markers were used. The diversity analysis was performed using TASSEL 5.0 and GenAlE × 6.51b2, software program. Of the 43 rice varieties, CR-Dhan-601, CR-Dhan-1014, Mahanadi, Jagabandhu, Gouri, Samanta and Chandrama were found to possess desirable lignocellulosic composition with respect to harnessing green fuels. The marker OsCESA-1.3 expressed the highest PIC (0.640), while the marker OsCESA-6.3 of lowest PIC (0.128). A moderate average estimate (0.367) of PIC was observed under current set of genotypes and marker system. The dendrogram analysis grouped the rice genotypes into two principal clusters i.e., cluster I and II. Cluster-II is monogenetic, while cluster-I is having 42 genotypes. CONCLUSIONS: The moderate level of both PIC and H average estimates indicate the narrow genetic bases of the germplasms. The varieties falling under different clusters possessing desirable lignocellulosic composition can be used in a hybridization programme to develop bioenergy efficient varieties. The promising varietal combinations that can be used as parents for developing bioenergy efficient genotypes are Kanchan / Gobinda, Mahanadi / Ramachandi, Mahanadi / Rambha, Mahanadi / Manika, Rambha / Manika, Rambha / Indravati and CR-Dhan-601 / Manika as they offer an advantage of higher cellulose accumulation. This study helped in identification of suitable dual purpose rice varieties for biofuel production without compromising food security.


Assuntos
Oryza , Humanos , Oryza/genética , Filogenia , Repetições de Microssatélites/genética , Alelos , Genótipo , Celulose , Variação Genética/genética
4.
Bioresour Technol ; 367: 128231, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332863

RESUMO

Several biochemical and thermochemical routes including pyrolysis, liquefaction, combustion and gasification are used to convert biomass to several bioproducts and green fuels. The current investigation included two important biomass namely, little millet stem (LMS) and sunflower stem (SS), whose potentiality as useful feedstocks is largely unexplored. The presence of considerable level of cellulose accumulation (approx. 30 %), volatiles (approx. 67 %) and high heating value (approx. 14 MJ/kg) in both the biomass, inferred their potentiality to be used as feedstocks in the pyrolysis process. The estimate of activation energy for LMS was reported as 191.14 kJ/mol (FWO), 191.46 kJ/mol (KAS) whereas for SS, the activation energy was estimated as 166.52 kJ/mol (FWO) and 162.68 kJ/mol (KAS). The difference between change in enthalpy and activation energy was small (5 to 6 kJ/mol) for both the biomasses, indicating the feasibility of combustion process. From Z(α) analyses, the experimental curve was seen passing through different theoretical curves, indicating complex nature of pyrolysis process for both the biomass.


Assuntos
Helianthus , Panicum , Pirólise , Biomassa , Cinética , Termogravimetria , Termodinâmica
5.
Int Sch Res Notices ; 2014: 207465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27350999

RESUMO

This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...