Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(10): 2475-2486, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38856214

RESUMO

Field emission finds a vital space in numerous scientific and technological applications, including high-resolution imaging at micro- and nano-scales, conducting high-energy physics experiments, molecule ionization in spectroscopy, and electronic uses. A continuous effort exists to develop new materials for enhanced field emission applications. In the present work, two-dimensional (2D) well-aligned CdSSe flake flowers (CdSSe-FFs) were successfully grown on gold-coated silicon substrate utilizing a simple and affordable chemical bath deposition approach at ambient temperature. The time-dependent growth mechanism from nanoparticles to FFs was observed at optimized parameters such as concentration of precursors, pH (~11), deposition time, and solution temperature. The crystalline nature of CdSSe-FFs is confirmed by high-resolution transmission electron microscopy (HRTEM) results, and selected area electron diffraction (SAED) observations reveal a hexagonal crystal structure. Additionally, the CdSSe-FFs thickness was confirmed by TEM analysis and found to be ~20-30 nm. The optical, photoelectric, and field emission (FE) characteristics are thoroughly explored which shows significant enhancement due to the formation of heterojunction between the gold-coated silicon substrate and CdSSe-FFs. The UV-visible absorption spectra of CdSSe-FFs show enhanced absorption at 700 nm, corresponding to the energy band gap (Eg) of 1.77 eV. The CdSSe-FFs exhibited field emission and photosensitive field emission (PSFE) characteristics. In FE study CdSSe-FFs shows an increase in current density of 387.2 µ A cm-2 in an applied field of 4.1 V m-1 which is 4.08 fold as compared to without light illumination (95.1 µ A cm-2). Furthermore, it shows excellent emission current stability at the preset value of 1.5 µA over 3 h with a deviation of the current density of less than 5% respectively. RESEARCH HIGHLIGHTS: Novel CdSSe flake flowers were grown on Au-coated Si substrate by a cost-effective chemical bath deposition route. The growth mechanism of CdSSe flake flowers is studied in detail. Field emission and Photoluminescence study of CdSSe flake flowers is characterized. CdSSe flake flowers with nanoflakes sharp edges exhibited enhanced field emission properties.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36168008

RESUMO

Population growth, industrialization, and the extensive use of chemicals in daily life have all contributed to an increase in waste generation and an intensified release of organic pollutants into the aquatic environment. To ensure the quality of water (including natural resources), the removal of these pollutants from wastewater has become a challenging task for scientific community. Conventional physical, chemical, and biological treatment methods are commonly used in combinations and are not very effective. Recently, carbon nanotubes (CNTs) emerged as the most reliable and adaptable choice for efficient water treatment due to their extraordinary material properties appearing as a single-step solution for water treatment. High surface area, exceptional porosities, hollow and layered structures, and ease of chemical activation and functionalization are some properties which makes it excellent adsorption material. Hence, this review paper discusses the recent advances in the synthesis, purification, and functionalization of CNTs for water and wastewater treatment. In addition, this study also also provides a quick overview of CNTs-based advance technologies employed in water treatment and carefully assesses the benefits versus risks during large-scale water treatment. Furthermore, it concludes that identified risks to the environment and human health cannot be easily ignored and strict regulatory requirements are a must for producing low-cost innoxious CNTs.

3.
Chemosphere ; 306: 135580, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810864

RESUMO

The presence of 1,4 dioxane in wastewater is associated with severe health and environmental issues. The removal of this toxic contaminant from the industrial effluents prior to final disposal is necessary. The study comprehensively evaluates the performance of sequential batch membrane bioreactor (MBR) for treating wastewater laden with 1,4 dioxane. Acetate was supplemented to the wastewater feed as an electron donor for enhancing and stimulating the microbial growing activities towards the degradation of 1,4 dioxane. The removal efficiency of 1,4 dioxane was maximized to 87.5 ± 6.8% using an acetate to dioxane (A/D) ratio of 4.0, which was substantially dropped to 31.06 ± 3.7% without acetate addition. Ethylene glycol, glyoxylic acid, glycolic acid, and oxalic acid were the main metabolites of 1,4 dioxane biodegradation using mixed culture bacteria. The 1,4 dioxane degrading bacteria, particularly the genus of Acinetobacter, were promoted to 92% at the A/D ratio of 4.0. This condition encouraged as well the increase of the main 1,4 dioxane degraders, i.e., Xanthomonadales (12.5%) and Pseudomonadales (9.1%). However, 50% of the Sphingobacteriales and 82.5% of Planctomycetes were reduced due to the inhibition effect of the 1,4 dioxane contaminate. Similarly, the relative abundance of Firmicutes, Verrucomicrobia, Chlamydiae, Actinobacteria, Chloroflexi, and Nitrospirae was reduced in the MBR at the A/D ratio of 4.0. The results derived from the microbial analysis and metabolites detection at different A/D ratios indicated that acetate supplementation (as an electron donor) maintained an essential role in encouraging the microorganisms to produce the monooxygenase enzymes responsible for the biodegradation process. Economic feasibility of such a MBR system showed that for a designed flow rate of 30 m3∙d-1, the payback period from reusing the treated wastewater would reach 6.6 yr. The results strongly recommend the utilization of mixed culture bacteria growing on acetate for removing 1,4 dioxane from the wastewater industry, achieving dual environmental and economic benefits.


Assuntos
Elétrons , Águas Residuárias , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Dioxanos/metabolismo
4.
Chemosphere ; 307(Pt 1): 135633, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810866

RESUMO

Cadmium (Cd) and Lead (Pb) from industrial wastewater can bioaccumulate in the living organisms of water bodies, posing serious threats to human health. Therefore, efficient remediation of heavy metal ions of Cd (II) and Pb (II) in aqueous media is necessary for public health and environmental sustainability. In the present study, water stable Zirconium (Zr) based metal organic frameworks (MOFs) with SO3H functionalization were synthesized by solvothermal method and used first time for the adsorption of Cd (II) and Pb (II). Synthesis of UiO-66-SO3H, nano-sized (<100 nm) MOFs, was confirmed by FTIR, XRD, FESEM and BET. Effects of contact time, pH and temperature were investigated for adsorption of Cd (II) and Pb (II) onto SO3H-functionalized Zr-MOFs. The UiO-66-SO3H displayed notable rejections of 97% and 88% towards Cd (II) and Pb (II), respectively, after 160 min at 25 °C and pH (6) with an initial concentration of 1000 mg/L. Adsorption capacities of Cd (II) and Pb (II) were achieved as 194.9154 (mg/g) and 176.6879 (mg/g), respectively, at an initial concentration of 1000 mg/L. The Pseudo second-order kinetic model fitted well with linear regression (R2) of value 1. The mechanism was confirmed mainly as a chemisorption and coordination interaction between sulfone group (-SO3H) and metal ions Cd (IIa) and Pb (II). These results may support effective adsorption and can be studied further to enrich and recycle other heavy metals from wastewater.


Assuntos
Estruturas Metalorgânicas , Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Humanos , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo , Metais Pesados/análise , Ácidos Ftálicos , Sulfonas , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Zircônio
5.
Chemosphere ; 304: 135236, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35688204

RESUMO

The development of polymeric membranes from polymers such as polystyrene (PS), polyvinylchloride (PVC), and their associated family has brought great momentum to the environmental remediation universe, mainly due to their surprisingly diverse and multi-purpose nature. Their usage has surged 20 times in the last half-century and is likely to double again in the coming 20 years. As a result, the polymeric materials economy and commercialization of research become increasingly important as a possible option for a country to boost prosperity while decreasing its reliance on limited raw resources and mitigating negative externalities. This transformation demands a systematic strategy, which involves progress beyond improving the existing models and building new avenues for collaboration. In this work, a sophisticated system, i.e., product space model (PSM), has been presented, explicitly appraising the opportunity space for United Kingdom, Italy, Poland, India, Canada, Indonesia, Brazil, Saudi Arabia, Russia and Colombia for their potential future industrialization and commercialization of polymeric membranes for environmental remediation. The results revealed that UK, Italy, Poland and India are at advantageous positions owing to their close proximity of (distance<2) and their placement in Parsimonious policy, which is the most desired quadrant of Policy Map of PSM, Canada and Indonesia have medium level opportunities, while Russia and Saudi Arabia have opportunities with more challenges to fully exploit the unexploited polymers products in terms of membranes for environmental remediation and prove favorable for export diversification, sustainable economic growth, and commercialization.


Assuntos
Recuperação e Remediação Ambiental , Canadá , Desenvolvimento Econômico , Polímeros , Simulação de Ambiente Espacial
6.
Curr Pharm Des ; 26(45): 5837-5843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33208061

RESUMO

Equol (4',7-isoflavandiol), is a phytoestrogenic compound, which is synthesized from parent molecule diadzein by intestinal bacterial flora. It is among one of the most extensively researched molecule due to its high affinity towards estrogen receptors. Its enantiomeric form S-equol has been explored in the treatment of estrogen/androgen mediated diseases. Various therapeutic applications such as anti-cancer, cardioprotective, antidiabetic, antiosteoporosis, anti-ageing, and neuroprotective efficacy are attributed to it. This review explored major studies related to biochemistry and pharmacological applications of equol for human health.


Assuntos
Equol , Microbioma Gastrointestinal , Equol/farmacologia , Humanos , Fitoestrógenos/farmacologia , Receptores de Estrogênio
7.
Case Rep Radiol ; 2016: 1738521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26989549

RESUMO

Pyometra is collection of pus within the uterine cavity and is usually associated with underlying gynaecological malignancy or other benign causes. Spontaneous rupture of pyometra is a rare complication. We report a case of a 65-year-old female who presented with acute abdomen and was diagnosed with a ruptured uterus secondary to pyometra and consequent peritonitis on dynamic transvaginal sonography (TVS) which was later confirmed on contrast enhanced computed tomography (CECT). An emergency laparotomy was performed and about 800 cc of pus was drained from the peritoneal cavity. A rent was found in the anterior uterine wall and hence hysterectomy was performed. Histopathology revealed mixed inflammatory cell infiltrate with no evidence of malignancy. There are only 31 cases of ruptured pyometra reported till date, most of which were definitively diagnosed only on laparotomy. In only two of these cases the preoperative diagnosis was made on CECT. We report this case, as the correct and definitive diagnosis was made preoperatively on dynamic TVS. To our knowledge, this is the first case report revealing spontaneous ruptured pyometra being diagnosed preoperatively on dynamic TVS. This report is aimed at giving emphasis on the use of simple dynamic TVS for accurate diagnosis of rare spontaneous ruptured pyometra causing peritonitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA