Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7107, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501317

RESUMO

Silage produced in tropical countries is prone to spoilage because of high humidity and temperature. Therefore, determining indigenous bacteria as potential inoculants is important to improve silage quality. This study aimed to determine bacterial community and functional changes associated with ensiling using amplicon metagenomics and to predict potential bacterial additives associated with silage quality in the Malaysian climate. Silages of two forage crops (sweet corn and Napier) were prepared, and their fermentation properties and functional bacterial communities were analysed. After ensiling, both silages were predominated by lactic acid bacteria (LAB), and they exhibited good silage quality with significant increment in lactic acid, reductions in pH and water-soluble carbohydrates, low level of acetic acid and the absence of propionic and butyric acid. LAB consortia consisting of homolactic and heterolactic species were proposed to be the potential bacterial additives for sweet corn and Napier silage fermentation. Tax4fun functional prediction revealed metabolic pathways related to fermentation activities (bacterial division, carbohydrate transport and catabolism, and secondary metabolite production) were enriched in ensiled crops (p < 0.05). These results might suggest active transport and metabolism of plant carbohydrates into a usable form to sustain bacterial reproduction during silage fermentation, yielding metabolic products such as lactic acid. This research has provided a comprehensive understanding of bacterial communities before and after ensiling, which can be useful for desirable silage fermentation in Malaysia.


Assuntos
Metagenômica , Silagem , Bactérias , Carboidratos , Produtos Agrícolas , Ácido Láctico/metabolismo , Silagem/microbiologia
2.
Brain Behav ; 10(11): e01817, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32886435

RESUMO

INTRODUCTION: Edible bird nest (EBN) is a natural food product produced from edible nest swiftlet's saliva which consists of glycoproteins as one of its main components; these glycoproteins contain an abundant of sialic acid. The dietary EBN supplementation has been reported to enhance brain functions in mammals and that the bioactivities and nutritional value of EBN are important during periods of rapid brain growth particularly for preterm infant. However, the effects of EBN in maternal on multigeneration learning and memory function still remain unclear. Thus, the present study aimed to determine the effects of maternal EBN supplementation on learning and memory function of their first (F1)- and second (F2)-generation mice. METHODS: CJ57BL/6 breeder F0 mice were fed with EBN (10 mg/kg) from different sources. After 6 weeks of diet supplementations, the F0 animals were bred to produce F1 and F2 animals. At 6 weeks of age, the F1 and F2 animals were tested for spatial recognition memory using a Y-maze test. The sialic acid content from EBN and brain gene expression were analyzed using HPLC and PCR, respectively. RESULTS: All EBN samples contained glycoprotein with high level of sialic acid. Dietary EBN supplementation also showed an upregulation of GNE, ST8SiaIV, SLC17A5, and BDNF mRNA associated with an improvement in Y-maze cognitive performance in both generations of animal. Qualitatively, the densities of synaptic vesicles in the presynaptic terminal were higher in the F1 and F2 animals which might derive from maternal EBN supplementation. CONCLUSION: This study provided a solid foundation toward the growing research on nutritional intervention from dietary EBN supplementation on cognitive and neurological development in the generation of mammals.


Assuntos
Aves , Recém-Nascido Prematuro , Animais , Suplementos Nutricionais , Humanos , Recém-Nascido , Aprendizagem , Memória , Camundongos
3.
Data Brief ; 24: 103824, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30984808

RESUMO

Eucheuma denticulatum or commonly known as "Spinosum", is an economically important red alga that naturally grows on coral reefs with moderately strong currents in tropical and sub-tropical areas. This species is the primary source of iota-carrageenan which has high demands in the food, pharmaceutical and manufacturing industries, and as such it has been widely cultivated. The increasing global demand for carrageenan has led to extensive commercial cultivation of carrageenophytes mainly in the tropics. The carrageenophyte seaweeds including E. denticulatum are indigenous to Sabah, Malaysia. To enrich the information on the genes involved in carrageenan biosynthesis, RNA sequencing has been performed and transcriptomic dataset has been generated using Illumina HiSeq™ 2000 sequencer. The raw data and transcriptomic data have been deposited in NCBI database with the accession number PRJNA477734. These data will provide valuable resources for functional genomics annotation and investigation of mechanisms underlying the regulations of genes in this algal species.

4.
3 Biotech ; 8(8): 321, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30034985

RESUMO

Information on the abiotic stress tolerance and ice-ice disease resistance properties of tissue-cultured Kappaphycus alvarezii is scarce and can pose a big hurdle to a wider use of tissue-cultured seaweed in the industry. Here, we reported on a study of seaweed-associated bacteria diversity in farmed and tissue-cultured K. alvarezii, and ice-ice disease resistance and elevated growth temperature tolerance of tissue-cultured K. alvarezii in laboratory conditions. A total of 40 endophytic seaweed-associated bacteria strains were isolated from 4 types of K. alvarezii samples based on their colony morphologies, Gram staining properties and 16S rRNA gene sequences. Bacteria strains isolated were found to belong to Alteromonas sp., Aestuariibacter sp., Idiomarina sp., Jejuia sp., Halomonas sp., Primorskyibacter sp., Pseudoalteromonas sp., Ruegeria sp., Terasakiella sp., Thalassospira sp. and Vibrio sp. Vibrio alginolyticus strain ABI-TU15 isolated in this study showed agar-degrading property when analyzed using agar depression assay. Disease resistance assay was performed by infecting healthy K. alvarezii with 105 cells/mL Vibrio sp. ABI-TU15. Severe ice-ice disease symptoms were detected in farmed seaweeds compared to the tissue-cultured K. alvarezii. Besides disease resistance, tissue-cultured K. alvarezii showed better tolerance to the elevated growth temperatures of 30 and 35 °C. In conclusion, our overall data suggests that tissue-cultured K. alvarezii exhibited better growth performance than farmed seaweeds when exposed to elevated growth temperature and ice-ice disease-causing agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...