Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 67: 102220, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489163

RESUMO

Climate change and exponential population growth are exposing an immediate need for developing future crops that are highly resilient and adaptable to changing environments to maintain global food security in the next decade. Rigorous selection from long domestication history has rendered cultivated crops genetically disadvantaged, raising concerns in their ability to adapt to these new challenges and limiting their usefulness in breeding programmes. As a result, future crop improvement efforts must rely on integrating various genomic strategies ranging from high-throughput sequencing to machine learning, in order to exploit germplasm diversity and overcome bottlenecks created by domestication, expansive multi-dimensional phenotypes, arduous breeding processes, complex traits and big data.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Mudança Climática , Produtos Agrícolas/genética , Domesticação , Genômica , Melhoramento Vegetal/métodos
2.
Theor Appl Genet ; 134(7): 2035-2050, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33768283

RESUMO

KEY MESSAGE: One hundred and sixty-seven B. juncea varieties were genotyped on the 90K Brassica assay (42,914 SNPs), which led to the identification of sixteen candidate genes for Rlm6. Brassica species are at high risk of severe crop loss due to pathogens, especially Leptosphaeria maculans (the causal agent of blackleg). Brassica juncea (L.) Czern is an important germplasm resource for canola improvement, due to its good agronomic traits, such as heat and drought tolerance and high blackleg resistance. The present study is the first using genome-wide association studies to identify candidate genes for blackleg resistance in B. juncea based on genome-wide SNPs obtained from the Illumina Infinium 90 K Brassica SNP array. The verification of Rlm6 in B. juncea was performed through a cotyledon infection test. Genotyping 42,914 single nucleotide polymorphisms (SNPs) in a panel of 167 B. juncea lines revealed a total of seven SNPs significantly associated with Rlm6 on chromosomes A07 and B04 in B. juncea. Furthermore, 16 candidate Rlm6 genes were found in these regions, defined as nucleotide binding site leucine-rich-repeat (NLR), leucine-rich repeat RLK (LRR-RLK) and LRR-RLP genes. This study will give insights into the blackleg resistance in B. juncea and facilitate identification of functional blackleg resistance genes which can be used in Brassica breeding.


Assuntos
Resistência à Doença/genética , Leptosphaeria/patogenicidade , Mostardeira/genética , Doenças das Plantas/genética , Genes de Plantas , Estudos de Associação Genética , Genótipo , Mostardeira/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
3.
Front Genet ; 12: 600789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679880

RESUMO

Meeting the needs of a growing world population in the face of imminent climate change is a challenge; breeding of vegetable and oilseed Brassica crops is part of the race in meeting these demands. Available genetic diversity constituting the foundation of breeding is essential in plant improvement. Elite varieties, land races, and crop wild species are important resources of useful variation and are available from existing genepools or genebanks. Conservation of diversity in genepools, genebanks, and even the wild is crucial in preventing the loss of variation for future breeding efforts. In addition, the identification of suitable parental lines and alleles is critical in ensuring the development of resilient Brassica crops. During the past two decades, an increasing number of high-quality nuclear and organellar Brassica genomes have been assembled. Whole-genome re-sequencing and the development of pan-genomes are overcoming the limitations of the single reference genome and provide the basis for further exploration. Genomic and complementary omic tools such as microarrays, transcriptomics, epigenetics, and reverse genetics facilitate the study of crop evolution, breeding histories, and the discovery of loci associated with highly sought-after agronomic traits. Furthermore, in genomic selection, predicted breeding values based on phenotype and genome-wide marker scores allow the preselection of promising genotypes, enhancing genetic gains and substantially quickening the breeding cycle. It is clear that genomics, armed with diversity, is set to lead the way in Brassica improvement; however, a multidisciplinary plant breeding approach that includes phenotype = genotype × environment × management interaction will ultimately ensure the selection of resilient Brassica varieties ready for climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...