Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299526

RESUMO

The Zingiberaceae family possess various phenolic compounds that have significant systemic bioactivities in the brain, including in age-related neurodegenerative diseases. Neurotrophins are growth factors that protect neurons from oxidative stress, and dysregulation of the neurotrophic system may result in neurocognitive disease. Phenolic compounds from the Zingiberaceae family have been used in traditional and complementary medicine (TCM) to improve cognitive functions. These compounds may affect the expression of neurotrophic agents, but their underlying molecular mechanisms require further investigation. Therefore, the goal of this review is to determine the expression and functional roles of phenolic compounds from the Zingiberaceae family in brain disorders and age-related neurodegenerative disorders. While previous studies have proposed various mechanisms for the neuroprotective activity of these compounds, their precise mechanism of action remains complex and poorly understood. Despite some promising findings, there are still shortcomings in the therapeutic use of these herbs, and current interventions involving the Zingiberaceae family appear to be clinically insufficient. This article aims to summarize recent discoveries of phenolic compounds from several Zingiberaceae family members and their use as neuroprotectants and provide the first review of evidence-linked neuroprotective activity of bioactive ingredients from prominent members of the Zingiberaceae family.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Zingiberaceae , Humanos , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Encefalopatias/tratamento farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico
2.
Front Pharmacol ; 14: 1006265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843947

RESUMO

Introduction: Ginger (Zingiber officinale Roscoe) can scavenge free radicals, which cause oxidative damage and inflamm-ageing. This study aimed to evaluate the antioxidant and anti-inflammatory effects of soil ginger's sub-critical water extracts (SWE) on different ages of Sprague Dawley (SD) rats. The antioxidant properties and yield of SWE of soil- and soilless-grown ginger (soil ginger and soilless ginger will be used throughout the passage) were compared and evaluated. Methods: Three (young), nine (adult), and twenty-one (old) months old SD rats were subjected to oral gavage treatments with either distilled water or the SWE of soil ginger at a concentration of 200 mg/kg body weight (BW) for three months. Results: Soil ginger was found to yield 46% more extract than soilless ginger. While [6]-shogaol was more prevalent in soilless ginger, and [6]-gingerol concentration was higher in soil ginger (p < 0.05). Interestingly, soil ginger exhibited higher antioxidant activities than soilless ginger by using 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay. With ginger treatment, a reduced levels of tumour necrosis factor-α (TNF-α) and C-reactive protein (CRP) but not interleukin-6 (IL-6) were observed in young rats. In all ages of SD rats, ginger treatment boosted catalase activity while lowering malondialdehyde (MDA). Reduction of urine 15-isoprostane F2t in young rats, creatine kinase-MM (CK-MM) in adult and old rats and lipid peroxidation (LPO) in young and adult rats were also observed. Discussion: The findings confirmed that the SWE of both soil and soilless grown ginger possessed antioxidant activities. Soil ginger produced a higher yield of extracts with a more prominent antioxidant activity. The SWE of soil ginger treatment on the different ages of SD rats ameliorates oxidative stress and inflammation responses. This could serve as the basis for developing a nutraceutical that can be used as a therapeutic intervention for ageing-related diseases.

3.
Front Pharmacol ; 13: 855384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754509

RESUMO

Botanical drug products consist of complex phytochemical constituents that vary based on various factors that substantially produce different pharmacological activities and possible side effects. Marantodes pumilum (Blume) Kuntze (Primulaceae) is one of the most popular Malay traditional botanical drugs and widely recognized for its medicinal use. Many studies have been conducted focusing on the identification of bioactive substances, pharmacological and toxicological activities in its specific varieties but less comprehensive study on M. pumilum authentication. Lack of quality control (QC) measurement assessment may cause different quality issues on M. pumilum containing products like adulteration by pharmaceutical substances, substitution, contamination, misidentification with toxic plant species, which may be detrimental to consumers' health and safety. This systematic literature review aims to provide an overview of the current scenario on the quality control of botanical drug products as determined by pharmacopoeia requirements specifically for M. pumilum authentication or identification. A systematic search for peer-reviewed publications to document literature search for M. pumilum authentication was performed using four electronic databases: Web of Science, PubMed, Scopus and ScienceDirect for related studies from January 2010 to December 2021. The research studies published in English and related articles for identification or authentication of M. pumilum were the main inclusion criteria in this review. A total 122 articles were identified, whereby 33 articles met the inclusion criteria. Macroscopy, microscopy, chemical fingerprinting techniques using chromatography, spectroscopy and hyphenated techniques, and genetic-based fingerprinting using DNA barcoding method have been used to identify M. pumilum and to distinguish between different varieties and plant parts. The study concluded that a combination of approaches is necessary for authenticating botanical drug substances and products containing M. pumilum to assure the quality, safety, and efficacy of marketed botanical drug products, particularly those with therapeutic claims.

4.
Front Pharmacol ; 13: 1070557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699081

RESUMO

Hypophyllanthin is a major lignan present in various Phyllanthus species and has been used as one of the bioactive chemical markers for quality control purposes as it contributes to their diverse pharmacological activities. The objective of this study is to compile up-to-date data on the pharmacological actions and mechanisms of hypophyllanthin. This review also includes the extracts of Phyllanthus species whose pharmacological actions have been partially attributed to hypophyllanthin. The scientific findings on the compound are critically analyzed and its potential as a lead molecule for the discovery of drug candidates for the development of therapeutics to treat diverse diseases is highlighted. Data collection was mainly through the exploration of Ovid-MEDLINE, Scopus, Science Direct, and Elsevier databases. Studies conducted in vitro and in vivo showed that hypophyllanthin had potent immunomodulating properties as well as a variety of other pharmacological properties, including anti-inflammatory, hepatoprotective, anti-tumor, anti-allergic, anti-hypertensive, and phytoestrogenic properties. Several mechanisms of action on the effects of hypophyllanthin on the immune system, in cancer and other disease states, were presented to provide some insights into its pharmacological effects. Before being submitted to clinical investigations, additional animal studies utilising different animal models are necessary to analyse its bioavailability, pharmacokinetics, and pharmacodynamic properties, as well as its toxicity, to determine its efficacy and safety. Understanding its potential as a lead molecule for the discovery of therapeutic candidates, particularly for the development of therapies for inflammatory and immune-related disorders, requires an understanding of its pharmacological activities and mechanisms of action. An insight into its pharmacological activities and mechanisms of action will provide an understanding of its potential as a lead compound for the discovery of drug candidates, especially for the development of therapies for inflammatory and immune related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA