Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323780

RESUMO

This study investigated the influence of dope extrusion rate (DER) and post-treatment effect on the morphology, permeation, and metal ion rejection by polyethersulfone/lithium bromide (PES/LiBr)-based hollow fiber (HF) membranes. HF fibers were spun with 2.25, 2.5, and 3.1 ratios of DER to bore fluid rate (BFR), wherein DER varied from 11.35, 12.5, to 15.6 mL/min with a fixed BFR (5 mL/min). Molecular weight cutoff (MWCO), pore size, water flux, and flux recovery ratio were determined, whereas lake water was used to observe the rejection rate of dissolved metallic ions. Results showed that with the increase of the DER wall thickness (WT), HFs increased from 401.5 to 419.5 um, and furthermore by the post-treatments up to 548.2 um, as confirmed by field emission scanning electron microscope (FESEM) analysis. Moreover, MWCO, pore size, and the pure water permeation (PWP) of the HF membranes decreased, while the separation performance for polyethylene glycol (PEG) solute increased with increasing DER. Post-treated HFs from 11.35 mL/min of DER showed 93.8% of MWCO value with up to 90% and 70% rejection of the arsenic and chromium metallic ions, respectively, in comparison with all other formulated HFs.

2.
Polymers (Basel) ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261121

RESUMO

Nanocrystalline cellulose is an abundant and inexhaustible organic material on Earth. It can be derived from many lignocellulosic plants and also from agricultural residues. They endowed exceptional physicochemical properties, which have promoted their intensive exploration in biomedical application, especially for tissue engineering scaffolds. Nanocrystalline cellulose has been acknowledged due to its low toxicity and low ecotoxicological risks towards living cells. To explore this field, this review provides an overview of nanocrystalline cellulose in designing materials of bone scaffolds. An introduction to nanocrystalline cellulose and its isolation method of acid hydrolysis are discussed following by the application of nanocrystalline cellulose in bone tissue engineering scaffolds. This review also provides comprehensive knowledge and highlights the contribution of nanocrystalline cellulose in terms of mechanical properties, biocompatibility and biodegradability of bone tissue engineering scaffolds. Lastly, the challenges for future scaffold development using nanocrystalline cellulose are also included.

3.
Proc Inst Mech Eng H ; 230(8): 739-49, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27194535

RESUMO

Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method.


Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Álcool de Polivinil/química , Materiais Biocompatíveis/síntese química , Fenômenos Biomecânicos , Linhagem Celular , Sobrevivência Celular , Humanos , Teste de Materiais , Nanofibras/química , Nanofibras/ultraestrutura , Nanotecnologia/instrumentação
4.
Mater Sci Eng C Mater Biol Appl ; 48: 556-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579957

RESUMO

The four heart valves represented in the mammalian hearts are responsible for maintaining unidirectional, non-hinder blood flow. The heart valve leaflets synchronically open and close approximately 4 million times a year and more than 3 billion times during the life. Valvular heart dysfunction is a significant cause of morbidity and mortality around the world. When one of the valves malfunctions, the medical choice is may be to replace the original valves with an artificial one. Currently, the mechanical and biological artificial valves are clinically used with some drawbacks. Tissue engineering heart valve concept represents a new technique to enhance the current model. In tissue engineering method, a three-dimensional scaffold is fabricated as the template for neo-tissue development. Appropriate cells are seeded to the matrix in vitro. Various approaches have been investigated either in scaffold biomaterials and fabrication techniques or cell source and cultivation methods. The available results of ongoing experiments indicate a promising future in this area (particularly in combination of bone marrow stem cells with synthetic scaffold), which can eliminate the need for lifelong anti-coagulation medication, durability and reoperation problems.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Doenças das Valvas Cardíacas/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...