Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(11): e202202730, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36426862

RESUMO

Homogeneous catalysts ("mediators") are frequently employed in organic electrosynthesis to control selectivity. Despite their advantages, they can have a negative influence on the overall energy and mass balance if used only once or recycled inefficiently. Polymediators are soluble redox-active polymers applicable as electrocatalysts, enabling recovery by dialysis or membrane filtration. Using anodic alcohol oxidation as an example, we have demonstrated that TEMPO-modified polymethacrylates (TPMA) can act as efficient and recyclable catalysts. In the present work, the influence of the molecular size on the redox properties and the catalytic activity was carefully elaborated using a series of TPMAs with well-defined molecular weight distributions. Cyclic voltammetry studies show that the polymer chain length has a pronounced impact on the key-properties. Together with preparative-scale electrolysis experiments, an optimum size range was identified for polymediator-guided sustainable reaction control.

2.
Chemistry ; 28(42): e202200974, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35510557

RESUMO

Hypervalent bromine(III) reagents possess a higher electrophilicity and a stronger oxidizing power compared to their iodine(III) counterparts. Despite the superior reactivity, bromine(III) reagents have a reputation of hard-to-control and difficult-to-synthesize compounds. This is partly due to their low stability, and partly because their synthesis typically relies on the use of the toxic and highly reactive BrF3 as a precursor. Recently, we proposed chelation-stabilized hypervalent bromine(III) compounds as a possible solution to both problems. First, they can be conveniently prepared by electro-oxidation of the corresponding bromoarenes. Second, the chelation endows bromine(III) species with increased stability while retaining sufficient reactivity, comparable to that of iodine(III) counterparts. Finally, their intrinsic reactivity can be unlocked in the presence of acids. Herein, an in-depth mechanistic study of both the electrochemical generation and the reactivity of the bromine(III) compounds is disclosed, with implications for known applications and future developments in the field.

3.
Angew Chem Int Ed Engl ; 60(29): 15832-15837, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33894098

RESUMO

In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult-to-control reactivity of λ3 -bromanes as well as to their challenging preparation from the highly toxic and corrosive BrF3 precursor. In this context, we present a straightforward and scalable approach to chelation-stabilized λ3 -bromanes by anodic oxidation of parent aryl bromides possessing two coordinating hexafluoro-2-hydroxypropanyl substituents. A series of para-substituted λ3 -bromanes with remarkably high redox potentials spanning a range from 1.86 V to 2.60 V vs. Ag/AgNO3 was synthesized by the electrochemical method. We demonstrate that the intrinsic reactivity of the bench-stable bromine(III) species can be unlocked by addition of a Lewis or a Brønsted acid. The synthetic utility of the λ3 -bromane activation is exemplified by oxidative C-C, C-N, and C-O bond forming reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...