Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 334: 199182, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490957

RESUMO

Influenza A viruses (H1N1) have been consistently one of the most evolving viruses that escape from vaccine-induced immunity. Although there has been a rapid rise in human influenza virus knowledge since the 2009 pandemic, the molecular information about Iranian strains is still inadequate. The aim of this study was to analyze the neuraminidase (NA) segment of the Iranian isolates in terms of phylogenetic, antiviral resistance, and vaccine efficiency. Ninety-three NA sequences collected among 1758 nasopharyngeal swab samples during the 2015-2016 influenza season were sequenced and submitted to NCBI. Moreover, all the submitted Iranian influenza H1N1 NA sequences since 2010 till 2019 were included in the study. Software including MEGA-X, MODELLER, UCSF ChimeraX, Auto-Dock 4.2, and other online tools were used to analyze the phylogenetic relationship, vaccine efficiency, and binding affinity to sialic acid of the selected NA proteins. Moreover, the information about antiviral drug resistance mutations of NA were gathered and compared to the Iranian NA segments to check the presence of antiviral drug-resistant strains. The phylogenetic study showed that most Iranian NA sequences (between 2015 and 2016) were located in a single clade and following years were located in its subclade by 3 major mutations (G77R/K, V81A, and J188T). Resistant mutations in drug targets of NA including I117M, D151E, I223V, and S247N were ascertained in 10 isolates during the 2015-2016 flu seasons. Investigation of vaccination effect revealed that Iranian isolates in 2017 and 2018 were best matched to A/Brisbane/02/2018 (H1N1), and in 2019 to A/Guangdong-Maonan/SWL1536/2019 (H1N1). Furthermore, we performed an in-silico analysis of NA enzymatic activity of all Iranian sequences by assessment of enzyme stability, ligand affinity, and active site availability. Overall, the enzyme activity of four Iranian strains (AUG84119, AUG84157, AUG84095, and AUG84100) was assumed as the maximum enzyme activity. This study highlighted the evolutionary trend of influenza A virus/H1N1 circulating in Iran, which provides a preliminary viewpoint for a better comprehension of new emerging strains' virulence and thus, more appropriate monitoring of influenza virus A/H1N1 during each outbreak season.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Antivirais/farmacologia , Farmacorresistência Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Influenza Humana/epidemiologia , Irã (Geográfico)/epidemiologia , Neuraminidase/genética , Filogenia
2.
Virus Res ; 259: 38-45, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30336188

RESUMO

In 2015, the influenza virus A/H1N1/pdm09 strain outbreak became prevalent throughout the different provinces of Iran. There are relatively limited complete genetic sequences available for this virus from Asian countries. Diagnosis and virological surveillance of influenza is essential for detecting novel genetic variants causing epidemic potential. This study describes the genetic properties of HA genome of influenza A/H1N1 pdm09 viruses circulating in Iran during the 2015/2016 season. In order to investigate the genetic pattern of influenza A/H1N1 pdm09, a total of 1758 nasopharyngeal swabs were screened by real-time RT-PCR. Of those, 510 cases were found to be positive for A/H1N1/pdm09 virus. Evolution of the approximately 100 positive specimens with high virus load was conducted via genomic phylogeny. Phylogenetic analysis of the HA genes of the A/H1N1pdm09 viruses revealed the circulation of clade 6B1, characterized by amino acid substitutions S84N, S162N and I216T, where position 162 became glycosylated. The N-glycosylation of HA protein is post or co-translational modification that affect the evolution of influenza viruses. For influenza A(H1N1) pdm09 viruses, we found more mutations in the antigenic sites than in the stem region. The results of this study confirmed the necessity of constant regular antigenic and molecular surveillance of circulating seasonal influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Variação Genética , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Irã (Geográfico)/epidemiologia , Modelos Moleculares , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Prevalência , Conformação Proteica , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...