Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6549)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34324427

RESUMO

The Rett syndrome protein MeCP2 was described as a methyl-CpG-binding protein, but its exact function remains unknown. Here we show that mouse MeCP2 is a microsatellite binding protein that specifically recognizes hydroxymethylated CA repeats. Depletion of MeCP2 alters chromatin organization of CA repeats and lamina-associated domains and results in nucleosome accumulation on CA repeats and genome-wide transcriptional dysregulation. The structure of MeCP2 in complex with a hydroxymethylated CA repeat reveals a characteristic DNA shape, with considerably modified geometry at the 5-hydroxymethylcytosine, which is recognized specifically by Arg133, a key residue whose mutation causes Rett syndrome. Our work identifies MeCP2 as a microsatellite DNA binding protein that targets the 5hmC-modified CA-rich strand and maintains genome regions nucleosome-free, suggesting a role for MeCP2 dysfunction in Rett syndrome.


Assuntos
Repetições de Dinucleotídeos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Repetições de Microssatélites , Nucleossomos/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Cromatina/ultraestrutura , Citosina/química , Citosina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Fibroblastos , Lobo Frontal/metabolismo , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Neurônios/metabolismo , Conformação de Ácido Nucleico , Oxirredução , Ligação Proteica , Domínios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Transcrição Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-28676789

RESUMO

Most nuclear receptors (NRs) bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs) involves specific protein-DNA and protein-protein interactions. The estrogen-related receptor (ERR) belongs to the steroid hormone nuclear receptor (SHR) family and shares strong similarity in its DNA-binding domain (DBD) with that of the estrogen receptor (ER). In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3), but in vivo, it preferentially binds to single half-site REs extended at the 5'-end by 3 bp [estrogen-related response element (ERREs)], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS), non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3), such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3), where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half-site is followed by a weaker one with degenerated sequence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...