Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170619, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38311075

RESUMO

Hydrocarbon (HC) contamination in groundwater (GW) is a widespread environmental issue. Dissolved hydrocarbons in water are commonly utilized as an energy source by natural microbial communities, which can produce water soluble intermediate metabolite compounds, herein referred to as oxygen containing organic compounds (OCOCs), before achieving complete mineralization. This review aims to provide a comprehensive assessment of the literature focused on the state of the science for OCOCs detected and measured in GW samples collected from petroleum contaminated aquifers. In this review, we discuss and evaluate two hypotheses investigating OCOC formation, which are major points of contention in the freshwater oil spill community that need to be addressed. We reviewed over 150 articles compiling studies investigating OCOC formation and persistence to uncover knowledge gaps in the literature and studies that recommend quantitative and qualitative measurements of OCOCs in petroleum-contaminated aquifers. This review is essential because no consensus exists regarding specific compounds and related concerns. We highlight the knowledge gaps to progressing the discussion of hydrocarbon conversion products.

3.
Aquat Toxicol ; 250: 106247, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917677

RESUMO

Aquatic toxicity posed by the complex mixture of biodegradation metabolites and related oxygen-containing organic compounds (OCOCs) in groundwater at typical petroleum release sites is of concern to regulatory agencies; several are using results from laboratory studies in older literature that are not appropriate analogs for risk management. Recent field studies from typical sites and natural groundwater should be utilized. In this study, OCOCs downgradient of the biodegrading crude oil release at the USGS Bemidji site were tested for freshwater aquatic toxicity using unaltered whole groundwater samples. This type of testing is optimal because the entire mixture of OCOCs present is tested directly and assessment is not affected by analytical limitations. Ceriodaphnia dubia and Pimephales promelas were tested for toxicity using USEPA Methods 1002 and 1000, which estimate chronic toxicity. OCOCs in representative samples up to the maximum concentration tested of 1710 ug/L Total Petroleum Hydrocarbons (TPH) (nC10 to nC40; without silica gel cleanup) did not result in effects relative to the lab control for C. dubia survival, or for P. promelas survival or growth; and did not result in effects above background for C. dubia reproduction. This is consistent with findings using the same testing methods and species on samples from 14 biodegrading fuel release sites: OCOCs did not cause increased toxicity relative to background at a maximum tested concentration of 1800 ug/L TPH (nC10 to nC28). Based on their toxicity testing using the same species and USEPA methods on groundwater from a biodegrading diesel release site, Washington Department of Ecology recently set a freshwater screening level for OCOCs at 3000 ug/L TPH ("Weathered DRO"). These studies indicate that, in the absence of dissolved hydrocarbons, OCOCs in groundwater from typical biodegrading fuel or crude oil releases are not toxic to C. dubia or P. promelas at typical concentrations.


Assuntos
Água Subterrânea , Petróleo , Poluentes Químicos da Água , Animais , Biodegradação Ambiental , Água Doce , Água Subterrânea/química , Hidrocarbonetos , Compostos Orgânicos , Petróleo/toxicidade , Gestão de Riscos , Poluentes Químicos da Água/toxicidade
4.
J Contam Hydrol ; 242: 103855, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265523

RESUMO

The concentrations of oxygen-containing organic compounds (OCOC), measured as dissolved organic carbon (DOC), in groundwater exceeds those of dissolved hydrocarbons, measured as total petroleum hydrocarbons (TPH), at a crude oil release site. Orbitrap mass spectrometry was used to characterize OCOC in samples of the oil, water from upgradient of the release, source area, and downgradient wells, and a local lake. Chemical characterization factors included carbon number, oxygen number, formulae similarity, double bond equivalents (DBE) and radiocarbon dating. Oil samples were dominated by formulae with less than 30 carbons, four or fewer oxygens, and a DBE of less than four. In water samples, formulae were identified with more than 30 carbons, more than 10 oxygens, and a DBE exceeding 30. These characteristics are consistent with DOC found in unimpacted water. Between 65% and 92% of the formulae found in samples collected within the elevated OCOC plume were also found in the upgradient or surface water samples. Evidence suggests that many of the OCOC are not petroleum degradation intermediates, but microbial products generated as a result of de novo synthesis by organisms growing on carbon supplied by the oil. Implications of these results for understanding the fate and managing the risk of hydrocarbons in the subsurface are discussed.


Assuntos
Água Subterrânea , Petróleo , Poluentes Químicos da Água , Hidrocarbonetos , Solventes , Poluentes Químicos da Água/análise
5.
Environ Toxicol Chem ; 39(8): 1634-1645, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418246

RESUMO

The potential toxicity to human and aquatic receptors of petroleum fuel biodegradation metabolites (oxygen-containing organic compounds [OCOCs]) in groundwater has been investigated as part of a multi-year research program. Whole mixtures collected from locations upgradient and downgradient of multiple fuel release sites were tested using: 1) in vitro screening assays for human genotoxicity (the gamma-H2AX assay) and estrogenic effects (estrogen receptor transcriptional activation assay), and 2) chronic aquatic toxicity tests in 3 species (Ceriodaphnia dubia, Raphidocelis subcapitata, and Pimephales promelas). In vitro screening assay results demonstrated that the mixtures did not cause genotoxic or estrogenic effects. No OCOC-related aquatic toxicity was observed and when aquatic toxicity did occur, upgradient samples typically had the same response as samples downgradient of the release, indicating that background water quality was impacting the results. This information provides additional support for previous work that focused on the individual compounds and, taken together, indicates that OCOCs from petroleum degradation at fuel release sites are unlikely to cause toxicity to human or freshwater receptors at the concentrations present. Environ Toxicol Chem 2020;39:1634-1645. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Água Subterrânea/química , Petróleo/análise , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Animais , Biodegradação Ambiental/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Cladocera/crescimento & desenvolvimento , Cyprinidae/fisiologia , Ecotoxicologia , Água Doce , Humanos , Salinidade , Qualidade da Água
6.
Chemosphere ; 244: 125504, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31837566

RESUMO

In this study, both GC × GC-TOFMS and Orbitrap ESI-MS were used to characterize the oxygen containing organic compounds, OCOCs, present in groundwater at a site where a crude oil pipeline ruptured decades ago. This is the only side-by-side comparison of results from these two methods analyzed by the same laboratory. GC × GC-TOFMS analysis shows OCOCs identified at the crude oil-release site are consistent with, and structurally similar to, those identified at previously studied fuel release sites. Molecular structures close to the release point differ from those found downgradient, becoming less complex and with different compound classes dominating. As with the GC × GC-TOFMS, the Orbitrap revealed that the composition of OCOCs present in groundwater close to the source area was distinctly different from that seen downgradient; however, the chemical structures increased significantly in size and complexity from wells near the source to the farthest downgradient well. Investigation into this finding suggests that the presence and structures of these non-GC-able OCOCs are consistent with organic matter resulting from biosynthesis or other processes found in natural water systems and are unlikely to be intermediates (metabolites) along petroleum biodegradation pathways.


Assuntos
Água Subterrânea/química , Compostos Orgânicos/análise , Oxigênio/análise , Poluição por Petróleo/análise , Biodegradação Ambiental , Vias Biossintéticas , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray , Poluentes Químicos da Água/análise
7.
Anal Chem ; 89(24): 13190-13194, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29148716

RESUMO

Methylenedianiline (MDA) is a common industrial chemical with health and product safety concerns. Common analysis methods require many steps including extraction and derivatization ending in GC/MS or HPLC analysis, which minimize its use as an on-line or at-line technique. The procedure can take hours, prohibiting its use as a real-time decision-making tool as well as using valuable resources and laboratory space. The new method presented here has been validated for MDA quantification in industrial grease samples over the concentration range of 1-40 ppm 4,4'-MDA. We present comparative results to the currently accepted method with excellent fidelity. This analytical method using surface-enhanced Raman spectroscopy reduces sample preparation and analysis time by more than an hour while preserving method accuracy, specificity, and dynamic range.

8.
Integr Environ Assess Manag ; 13(4): 714-727, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27626237

RESUMO

This paper summarizes the results of a 5-y research study of the nature and toxicity of petroleum biodegradation metabolites in groundwater at fuel release sites that are quantified as diesel-range "Total Petroleum Hydrocarbons" (TPH; also known as TPHd, diesel-range organics (DRO), etc.), unless a silica gel cleanup (SGC) step is used on the sample extract prior to the TPH analysis. This issue is important for site risk management in regulatory jurisdictions that use TPH as a metric; the presence of these metabolites may preclude site closure even if all other factors can be considered "low-risk." Previous work has shown that up to 100% of the extractable organics in groundwater at petroleum release sites can be biodegradation metabolites. The metabolites can be separated from the hydrocarbons by incorporating an SGC step; however, regulatory agency acceptance of SGC has been inconsistent because of questions about the nature and toxicity of the metabolites. The present study was conducted to answer these specific questions. Groundwater samples collected from source and downgradient wells at fuel release sites were extracted and subjected to targeted gas chromatography-mass spectrometry (GC-MS) and nontargeted two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-MS) analyses, and the metabolites identified in each sample were classified according to molecular structural classes and assigned an oral reference dose (RfD)-based toxicity ranking. Our work demonstrates that the metabolites identified in groundwater at biodegrading fuel release sites are in classes ranked as low toxicity to humans and are not expected to pose significant risk to human health. The identified metabolites naturally attenuate in a predictable manner, with an overall trend to an increasingly higher proportion of organic acids and esters, and a lower human toxicity profile, and a life cycle that is consistent with the low-risk natural attenuation paradigm adopted by many regulatory agencies for petroleum release sites. Integr Environ Assess Manag 2017;13:714-727. © 2016 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Poluição por Petróleo/análise , Petróleo/metabolismo , Gestão de Riscos/métodos , Monitoramento Ambiental , Água Subterrânea/química , Hidrocarbonetos/análise , Petróleo/análise , Poluentes Químicos da Água/análise
9.
Environ Toxicol Chem ; 34(9): 1959-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25891164

RESUMO

In an effort to understand the nature and toxicity of petroleum hydrocarbon degradation metabolites, 2-dimensional gas chromatography linked to a time-of-flight mass spectrometer (GC×GC-TOFMS) was used to conduct nontargeted analysis of the extracts of 61 groundwater samples collected from 10 fuel release sites. An unexpected result was the tentative identification of 197 unique esters. Although esters are known to be part of specific hydrocarbon degradative pathways, they are not commonly considered or evaluated in field studies of petroleum biodegradation. In addition to describing the compounds identified, the present study discusses the role for nontargeted analysis in environmental studies. Overall, the low toxicological profile of the identified esters, along with the limited potential for exposure, renders them unlikely to pose any significant health risk.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Ésteres , Água Subterrânea/química , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
10.
Anal Chem ; 86(22): 11464-71, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25346184

RESUMO

The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX analytes in binary mixtures is demonstrated in the sub-parts-per-million concentration range.


Assuntos
Hidrocarbonetos Aromáticos/análise , Som , Transdutores , Eletrodos , Desenho de Equipamento , Cinética , Ruído , Propriedades de Superfície , Termodinâmica , Água/química
11.
Anal Chem ; 86(3): 1794-9, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24392747

RESUMO

A need exists for compact sensor systems capable of in situ monitoring of groundwater for accidental releases of fuel and oil. The work reported here addresses this need, using shear horizontal surface acoustic wave (SH-SAW) sensors, which function effectively in liquid environments. To achieve enhanced sensitivity and partial selectivity for hydrocarbons, the devices are coated with thin chemically sensitive polymer films. Various polymer materials are investigated with the goal of identifying a set of coatings suitable for a sensor array. The system is tested with compounds indicative of fuel and oil releases, in particular, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), in the low milligrams/liters to high micrograms/liters concentration range. Particular emphasis is placed on detection of benzene, a known carcinogen. It was observed that within the above concentration range, responses to multiple analytes in a mixture are additive, and there is a characteristic response time for each coating/analyte pair, which is largely independent of concentration. With the use of both the steady-state and transient-response information of SH-SAW sensor devices coated with three different polymer materials, poly(ethyl acrylate), poly(epichlorohydrin), and poly(isobutylene), a response pattern was obtained for benzene that is easily distinguishable from those of the other BTEX compounds. The time courses of the responses to binary analyte mixtures were modeled accurately using dual-exponential fits, yielding a characteristic concentration-independent time constant for each analyte/coating pair. Benzene concentration was quantified in the aqueous phase in the presence of the other BTEX compounds.


Assuntos
Acústica , Hidrocarbonetos Aromáticos/análise , Água/química , Limite de Detecção , Propriedades de Superfície
12.
Environ Sci Technol ; 47(18): 10471-6, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23971758

RESUMO

Groundwater at fuel release sites often contains nonpolar hydrocarbons that originate from both the fuel release and other environmental sources, as well as polar metabolites of petroleum biodegradation. These compounds, along with other polar artifacts, can be quantified as "total petroleum hydrocarbons" using USEPA Methods 3510/8015B, unless a silica gel cleanup step is used to separate nonpolar hydrocarbons from polar compounds prior to analysis. Only a limited number of these metabolites have been identified by traditional GC-MS methods, because they are difficult to resolve using single-column configurations. Additionally, the targeted use of derivatization limits the detection of many potential metabolites of interest. The objective of this research was to develop a nontargeted GC×GC-TOFMS approach to characterize petroleum metabolites in environmental samples gathered from fuel release sites. The method tentatively identified more than 760 unique polar compounds, including acids/esters, alcohols, phenols, ketones, and aldehydes, from 22 groundwater samples collected at five sites. Standards for 28 polar compounds indicate that effective limits of quantitation for most of these compounds in the groundwater samples range from 1 to 11 µg/L.


Assuntos
Água Subterrânea/análise , Petróleo , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise
13.
J Chromatogr A ; 1184(1-2): 341-52, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17697686

RESUMO

Comprehensive two-dimensional (2D) separations provide the analyst with a tremendous amount of complex data. In order to glean useful information from this complex data, advancements in commercially available software that implement chemometrics are currently available and continue to evolve. Future advancements will no doubt involve commercializing (or adapting) specialized, in-house chemometric techniques that are currently found only in the hands of technical experts and researchers in industry, government, and academia. In order to make timely advancements, future commercialization of novel chemometric techniques should involve collaborations among instrument software manufacturers, professional programmers, technical experts, and researchers. During the last decade, this field has seen a steady advancement from single analyte target analysis to comprehensive non-target analysis of entire multidimensional sample profiles (involving sample classification and/or data mining for discovery-based sample comparisons). The advancements in instrumentation and chemometric software tools have a tremendous impact in various applications: fuels, food, environmental, pharmaceuticals, metabolomics, etc. Most of the development has been for software to apply with gas chromatography-based instrumentation, such as comprehensive two-dimensional gas chromatography (GC x GC) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC x GC-TOF-MS). More recently there have been notable advancements in liquid-phase instrumentation as well.


Assuntos
Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Algoritmos , Cromatografia Gasosa-Espectrometria de Massas/métodos
14.
J Chromatogr A ; 1186(1-2): 401-11, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18001745

RESUMO

A yeast metabolome exhibiting oscillatory behavior was analyzed using comprehensive two-dimensional gas chromatography-time-of-flight-mass spectrometry (GC x GC-TOF-MS) and in-house developed data analysis software methodology, referred to as a signal ratio method (S(ratio) method). In this study, 44 identified unique metabolites were found to exhibit cycling, with a depth-of-modulation amplitude greater than three. After the initial locations are found using the S(ratio) software, and identified preliminarily using ChromaTOF software, the refined mass spectra and peak volumes were subsequently obtained using parallel factor analysis (PARAFAC). The peak volumes provided by PARAFAC deconvolution provide a measurement of the cycling depth-of-modulation amplitude that is more accurate than the initial S(ratio) information (which serves as a rapid screening procedure to find the cycling metabolites while excluding peaks that do not cycle). The S(ratio) reported is a rapid method to determine the depth-of-modulation while not constraining the search to specific cycling frequencies. The phase delay of the cycling metabolites ranged widely in relation to the oxygen consumption cycling pattern.


Assuntos
Fatores Biológicos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Saccharomyces cerevisiae/metabolismo , Fatores Biológicos/química , Análise de Componente Principal , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Proc Natl Acad Sci U S A ; 104(43): 16886-91, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17940006

RESUMO

Budding yeast undergo robust oscillations in oxygen consumption during continuous growth in a nutrient-limited environment. Using liquid chromatography-mass spectrometry and comprehensive 2D gas chromatography-mass spectrometry-based metabolite profiling methods, we have determined that the intracellular concentrations of many metabolites change periodically as a function of these metabolic cycles. These results reveal the logic of cellular metabolism during different phases of the life of a yeast cell. They may further indicate that oscillation in the abundance of key metabolites might help control the temporal regulation of cellular processes and the establishment of a cycle. Such oscillations in metabolic state might occur during the course of other biological cycles.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Heme/biossíntese , NADP/metabolismo , Saccharomyces cerevisiae/genética , Enxofre/metabolismo , Fatores de Tempo
16.
Analyst ; 132(8): 756-67, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17646875

RESUMO

The first extensive study of yeast metabolite GC x GC-TOFMS data from cells grown under fermenting, R, and respiring, DR, conditions is reported. In this study, recently developed chemometric software for use with three-dimensional instrumentation data was implemented, using a statistically-based Fisher ratio method. The Fisher ratio method is fully automated and will rapidly reduce the data to pinpoint two-dimensional chromatographic peaks differentiating sample types while utilizing all the mass channels. The effect of lowering the Fisher ratio threshold on peak identification was studied. At the lowest threshold (just above the noise level), 73 metabolite peaks were identified, nearly three-fold greater than the number of previously reported metabolite peaks identified (26). In addition to the 73 identified metabolites, 81 unknown metabolites were also located. A Parallel Factor Analysis graphical user interface (PARAFAC GUI) was applied to selected mass channels to obtain a concentration ratio, for each metabolite under the two growth conditions. Of the 73 known metabolites identified by the Fisher ratio method, 54 were statistically changing to the 95% confidence limit between the DR and R conditions according to the rigorous Student's t-test. PARAFAC determined the concentration ratio and provided a fully-deconvoluted (i.e. mathematically resolved) mass spectrum for each of the metabolites. The combination of the Fisher ratio method with the PARAFAC GUI provides high-throughput software for discovery-based metabolomics research, and is novel for GC x GC-TOFMS data due to the use of the entire data set in the analysis (640 MB x 70 runs, double precision floating point).


Assuntos
Algoritmos , Proteínas Fúngicas/análise , Modelos Estatísticos , Leveduras/química , Cromatografia Gasosa-Espectrometria de Massas , Micologia/métodos , Leveduras/metabolismo
17.
Anal Chem ; 78(8): 2700-9, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16615782

RESUMO

Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry coupled with rapid chemometric analysis were used to identify chemical differences in metabolite extracts isolated from yeast cells either metabolizing glucose (repressed (R) cells) via fermentation or metabolizing ethanol by respiration (derepressed (DR) cells). Principal component analysis (PCA) followed by parallel factor analysis (PARAFAC) in concert with the LECO ChromaTOF software located and identified the differences in composition between the two types of cell extracts and provided a reliable ratio of the metabolite concentrations. In this report, we demonstrate the analytical method developed to provide relatively rapid analysis of three selective mass channels (m/z 73, 205, 387), although in principle all collected mass channels could be analyzed. Twenty-six metabolites that differentiate repressed cells from derepressed cells were identified. The DR/R ratio of metabolite concentrations ranged from 0.02 for glucose to 67 for trehalose. The average biological variation of the sample extracts was 31%. This analysis demonstrates the utility and benefit of using PCA combined with PARAFAC and ChromaTOF software on extremely complex samples to derive useful information from complex three-dimensional chromatographic data objectively and relatively rapidly.


Assuntos
Cromatografia Gasosa/métodos , Etanol/análise , Fermentação , Glucose/análise , Espectrometria de Massas/métodos , Trealose/análise , Leveduras/metabolismo , Etanol/metabolismo , Análise Fatorial , Glucose/metabolismo , Respiração , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sensibilidade e Especificidade , Fatores de Tempo , Trealose/metabolismo , Leveduras/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...