Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Legal Med ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902543

RESUMO

A range of investigative practices to aid explosive-related death investigations currently exist, although the use of histopathological bone samples to diagnose blast exposure and the distance of individuals from the blast source has not been previously reported. Forensic histopathology has been used effectively on soft tissue samples to define blast-related injuries effectively, analysing human organs such as the lungs, brain, liver, and skeletal muscles, providing important and useful forensic pathology interpretations. However, no studies currently exist examining the post-blast histological changes in human or animal bones subjected to blasts for forensic pathology practice, despite the opportunity that hard tissue bone samples present, given their significantly lower rate of decomposition over soft tissue. This study presents the first evidence-based findings on the post-blast histological changes in three animal bones when exposed to close-range chemical detonation (C4). The study's qualitative findings highlight critical changes in the tissue architecture of three different animal bone sources due to blast effects with range from the blast source. This emphasises the potential use of histopathological bone sample analysis in future blast-related death investigations, while providing ideas to further explore this work using larger-scale experiments and post-blast case studies in aid of applying this work to human samples and forensic pathology practice.

3.
Comput Methods Programs Biomed ; 158: 193-205, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29544785

RESUMO

BACKGROUND AND OBJECTIVE: The aim of this research is to study the behaviour of a human head during the event of an impact of a cricket ball. While many recent incidents were reported in relation to head injuries caused by the impact of cricket balls, there is no clear information available in the published literature about the possible threat levels and the protection level of the current protective equipment. This research investigates the effects of an impact of a cricket ball on a human head and the level of protection offered by the existing standard cricket helmet. METHOD: An experimental program was carried out to measure the localised pressure caused by the impact of standard cricket balls. The balls were directed at a speed of 110 km/h on a 3D printed head model, with and without a standard cricket helmet. Numerical simulations were carried out using advanced finite element package LS-DYNA to validate the experimental results. RESULTS: The experimental and numerical results showed approximately a 60% reduction in the pressure on the head model when the helmet was used. Both frontal and side impact resulted in head acceleration values in the range of 225-250 g at a ball speed of 110 km/h. There was a 36% reduction observed in the peak acceleration of the brain when wearing a helmet. Furthermore, numerical simulations showed a 67% reduction in the force on the skull and a 95% reduction in the skull internal energy when introducing the helmet. CONCLUSIONS: (1) Upon impact, high localised pressure could cause concussion for a player without helmet. (2) When a helmet was used, the acceleration of the brain observed in the numerical results was at non-critical levels according to existing standards. (3) A significant increase in the threat levels was observed for a player without helmet, based on force, pressure, acceleration and energy criteria, which resulted in recommending the compulsory use of the cricket helmet. (4) Numerical results showed a good correlation with experimental results and hence, the numerical technique used in this study can be recommended for future applications.


Assuntos
Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Traumatismos Craniocerebrais/diagnóstico , Dispositivos de Proteção da Cabeça , Cabeça , Modelos Anatômicos , Esportes , Aceleração , Algoritmos , Traumatismos em Atletas/etiologia , Traumatismos em Atletas/prevenção & controle , Encéfalo/fisiopatologia , Concussão Encefálica/etiologia , Concussão Encefálica/prevenção & controle , Traumatismos Craniocerebrais/etiologia , Traumatismos Craniocerebrais/prevenção & controle , Desenho de Equipamento , Humanos , Masculino , Pressão , Impressão Tridimensional , Crânio/fisiopatologia
4.
Polymers (Basel) ; 8(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30979298

RESUMO

In recent years, attention has been focused on elastomeric polymers as a potential retrofitting material considering their capability in contributing towards the impact resistance of various structural elements. A comprehensive understanding of the behavior and the morphology of this material are essential to propose an effective and feasible alternative to existing structural strengthening and retrofitting materials. This article presents the findings obtained from a series of experimental investigations to characterize the physical, mechanical, chemical and thermal behavior of eight types of palm-based polyurethane (PU) elastomers, which were synthesized from the reaction between palm kernel oil-based monoester polyol (PKO-p) and 4,4-diphenylmethane diisocyanate (MDI) with polyethylene glycol (PEG) as the plasticizer via pre-polymerization. Fourier transform infrared (FT-IR) spectroscopy analysis was conducted to examine the functional groups in PU systems. Mechanical and physical behavior was studied with focus on elongation, stresses, modulus, energy absorption and dissipation, and load dispersion capacities by conducting hardness, tensile, flexural, Izod impact, and differential scanning calorimetry tests. Experimental results suggest that the palm-based PU has positive effects as a strengthening and retrofitting material against dynamic impulsive loadings both in terms of energy absorption and dissipation, and load dispersion. In addition, among all PUs with different plasticizer contents, PU2 to PU8 (which contain 2% to 8% (w/w) PEG with respect to PKO-p content) show the best correlation with mechanical response under quasi-static conditions focusing on energy absorption and dissipation and load dispersion characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...